14.已知f(x)=a+$\frac{1}{{2}^{x}-1}$為奇函數(shù),求常數(shù)a的值及f(x)的值域.

分析 由題意可得f(-1)+f(1)=0,可得a值,再由定義域和反比例函數(shù)以及不等式的性質(zhì)可得函數(shù)的值域.

解答 解:由2x-1≠0可得x≠0,可得函數(shù)的定義域?yàn)閧x|x≠0},
∵f(x)=a+$\frac{1}{{2}^{x}-1}$是奇函數(shù),∴f(-1)+f(1)=0,
∴a+$\frac{1}{{2}^{-1}-1}$+a+$\frac{1}{{2}^{1}-1}$=0,解得a=$\frac{1}{2}$,
∴f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$,
∵x≠0,∴2x>0且2x≠1,
∴2x-1>-1且2x-1≠0,
∴$\frac{1}{{2}^{x}-1}$>0或 $\frac{1}{{2}^{x}-1}$<-1,
∴$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$>$\frac{1}{2}$或 $\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$<-$\frac{1}{2}$,
∴函數(shù)的值域?yàn)椋?∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性和函數(shù)的值域,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn=-an-$\frac{1}{{{2^{n-1}}}}$+2(n∈N*
(Ⅰ)求證:數(shù)列{2nan}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=$\frac{n+1}{n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)令cn=$\frac{a_n}{{n+{a_n}}}$,求證:當(dāng)n≥2時(shí),c1+c2+…+cn<$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P為曲線C:y=x3-x上一點(diǎn),曲線C在點(diǎn)P處的切線l1交曲線C于點(diǎn)Q(異于點(diǎn)P),若直線l1的斜率為k1,曲線C在點(diǎn)Q處的切線l2的斜率為k2,則4k1-k2的值為( 。
A.-5B.-4C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列說(shuō)法中正確的是:②③④
①函數(shù)$y={x^{-\frac{3}{2}}}$的定義域是{x|x≠0};
②方程x2+(a-3)x+a=0的有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
③函數(shù)y=lg$\frac{1-x}{1+x}$在定義域上為奇函數(shù);
④函數(shù)y=loga(2x-5)-2,(a>0,且a≠1)恒過(guò)定點(diǎn)(3,-2);
⑤若3x+3-x=2$\sqrt{2}$,則3x-3-x的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{a{x}^{2}+x-a}{{x}^{2}-x+1}$,a∈R.
(1)若a=0,試求函數(shù)f(x)的值域;
(2)若不等式f(x)>0的解集為{x|-$\frac{1}{2}$<x<2},求實(shí)數(shù)a的值;
(3)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)是偶函數(shù)的是( 。
A.y=$|\begin{array}{l}{x-1}\end{array}|$B.$y=\frac{1}{{x}^{2}}$C.y=x2-2xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)是定義在區(qū)間[-1,1]上的增函數(shù),且f(x-1)<f(1-3x),則x的取值范圍是[0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)y=cos4x+2sin2xcos2x-cos2x+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.圓心在點(diǎn)C(1,3),并且和直線3x-4y-11=0相切的圓.

查看答案和解析>>

同步練習(xí)冊(cè)答案