分析 先根據(jù)圓C1的方程求出圓心和半徑,再根據(jù)垂直及中點在軸上這兩個條件,求出圓心關(guān)于直線的對稱點的坐標(biāo),即可求得關(guān)于直線對稱的圓的方程.
解答 解:圓C1:(x+3)2+(y-1)2=4的圓心為C1(-3,1),半徑為2,
設(shè)C1(-3,1)關(guān)于直線l對稱的點C2的坐標(biāo)為(m,n),則由$\left\{\begin{array}{l}{\frac{n-1}{m+3}•\frac{-14}{8}=-1}\\{14•\frac{m-3}{2}+8•\frac{n+1}{2}-31=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{7n-4m=19}\\{7m+4n=48}\end{array}\right.$,求得$\left\{\begin{array}{l}{m=4}\\{n=5}\end{array}\right.$,故要求的圓C2的方程為:(x-4)2+(y-5)2=4.
點評 本題主要考查直線和圓的位置關(guān)系,求一個圓關(guān)于直線的對稱圓的方程的方法,關(guān)鍵是求出圓心關(guān)于直線的對稱點的坐標(biāo),利用了屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | -1或 2 | D. | 1或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{e}$) | C. | (0,+∞) | D. | (0,e) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com