18.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1+a10-a5=6,則S11=(  )
A.55B.66C.110D.132

分析 設(shè)等差數(shù)列{an}的公差為d,由a1+a10-a5=6,得a6=6,由等差數(shù)列{an}的前n項(xiàng)和公式計(jì)算即可得答案.

解答 解:設(shè)等差數(shù)列{an}的公差為d,由a1+a10-a5=6,得:a1+5d=6,
∴a6=6.
則${S}_{11}=\frac{11({a}_{1}+{a}_{11})}{2}$=66.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,正視圖為直角三角形,側(cè)視圖為等邊三角形,俯視圖為等腰直角三角形,則其外接球的表面積為(  )
A.B.$\frac{20}{3}π$C.D.$\frac{28}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某人欲把a(bǔ),b兩盆紅色花和c,d兩盆紫色花放在一排四個(gè)花臺上,若b,c兩盆花必須相鄰,則不同的放法共有12種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對任意n∈N*,都有4Sn=an2+2an,其中Sn為數(shù)列{an}的前n項(xiàng)和,則數(shù)列{an}的通項(xiàng)公式為an=2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.甲、乙等5人在9月3號參加了紀(jì)念抗日戰(zhàn)爭勝利70周年閱兵慶典后,在天安門廣場排成一排拍照留念,甲和乙必須相鄰的排法有( 。┓N.
A.24B.48C.72D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{7}cosα}\\{y=2+\sqrt{7}sinα}\end{array}\right.$(其中α為參數(shù)),曲線C2:(x-1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(Ⅱ)若射線θ=$\frac{π}{6}$(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,A,B,C,D是半徑為1的⊙O上的點(diǎn),BD=DC=1,⊙O在點(diǎn)B處的切線交AD的延長線于點(diǎn)E.
(Ⅰ)求證:∠EBD=∠CAD;
(Ⅱ)若AD為⊙O的直徑,求BE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)拋物線C:y2=8x的焦點(diǎn)為F,過F的直線與C相交于A,B兩點(diǎn),記點(diǎn)F到直線l:x=-2的距離為d,則有( 。
A.|AB|=2dB.|AB|≥2dC.|AB|≤2dD.|AB|<2d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)$f(x)=6{cos^2}\frac{ωx}{2}+\sqrt{3}sinωx-3({ω>0})$在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若$f({x_0})=\frac{{8\sqrt{3}}}{5}$,且${x_0}∈({-\frac{10}{3},\frac{2}{3}})$,求f(x0+1)的值;
(3)若函數(shù)f(x)滿足方程$f(x)=a({0<a<2\sqrt{3}})$,求在[-2,12]內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

同步練習(xí)冊答案