4.設(shè)等差數(shù)列{an}中,an>0,an-1-an2+an+1=0(n≥2),求通項(xiàng)an

分析 等差數(shù)列{an}中,an>0,an-1-an2+an+1=0(n≥2),可得an-1+an+1=${a}_{n}^{2}$=2an,解出即可.

解答 解:∵等差數(shù)列{an}中,an>0,an-1-an2+an+1=0(n≥2),
∴an-1+an+1=${a}_{n}^{2}$=2an
解得an=2.
∴an=2.

點(diǎn)評 本題考查了遞推式的應(yīng)用、等差數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.把函數(shù)y=sin(x+$\frac{π}{3}$)圖象上所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位,再將所得圖象的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標(biāo)不變),得圖象的解析式是y=sin(ωx+φ)(ω>0,|φ|<π),則( 。
A.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$B.ω=2,φ=$\frac{π}{3}$C.ω=2,φ=0D.ω=2,φ=$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A={a+2,(a+1)2,a2+3a+3},若1∈A,則實(shí)數(shù)a構(gòu)成的集合B的元素個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.x是三角形的一個(gè)內(nèi)角,且sinx+cosx=-$\frac{1}{5}$,則tanx的值為( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1-si{n}^{2}(\frac{π}{3}-2x)}{cos(2x-\frac{π}{3})}$•$\frac{3}{tan(2x+\frac{7π}{6})}$.
(1)求函數(shù)f(x)的最小正周期及值域;
(2)求當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知3x+5y+14=0,其中x∈[-3,2],求|$\frac{y+2}{x+1}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求證:CD⊥平面PAC;
(2)如果N是棱AB上一點(diǎn),若VN-PBC:VN-AMC=3:2,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,三棱錐ABC-A1B1C1的底面ABC是正三角形,A1D⊥平面ABC,D是AC的中點(diǎn).
(1)求證:A1C1⊥A1B;
(2)求證:B1C∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價(jià)均為每平方米100元.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最?

查看答案和解析>>

同步練習(xí)冊答案