分析 (1)由條件利用三角函數(shù)的恒等變換及化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱(chēng)性,得出結(jié)論.
(2)由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)的值域.
解答 解:函數(shù)$f(x)=\sqrt{3}sin2x+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$=$\sqrt{3}$sin2x+(sinx-cosx)(sinx+cosx)
=$\sqrt{3}$sin2x+sin2x-cos2x=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),
由$2x-\frac{π}{6}=kπ+\frac{π}{2}(k∈Z),得:x=\frac{kπ}{2}+\frac{π}{3}(k∈Z)$,
∴函數(shù)圖象的對(duì)稱(chēng)軸方程為$x=\frac{kπ}{2}+\frac{π}{3}(k∈Z)$.
(2)∵$x∈[-\frac{π}{12},\frac{π}{2}]$,∴$2x-\frac{π}{6}∈[-\frac{π}{3},\frac{5π}{6}]$.
∵$f(x)=sin(2x-\frac{π}{6})在區(qū)間[-\frac{π}{12},\frac{π}{3}]上單調(diào)遞增,在區(qū)間[\frac{π}{3},\frac{π}{2}]$上單調(diào)遞減,∴$當(dāng)x=\frac{π}{3}時(shí),f(x)$取得最大值2.
又f(-$\frac{π}{12}$)=-$\sqrt{3}$<f($\frac{π}{2}$)=1,故函數(shù)的最小值為-$\sqrt{3}$,故函數(shù)的值域?yàn)閇-$\sqrt{3}$,2].
點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,正弦函數(shù)的圖象的對(duì)稱(chēng)性,定義域和值域、最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f:x→(2x-1)2 | B. | f:x→(2x-3) | C. | f:x→(2x-1) | D. | f:x→(2x-3)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 64 | B. | 32 | C. | 2$\sqrt{2}$ | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com