3.由“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”可類比猜想:正四面體的內(nèi)切球切于四個面(  )
A.各正三角形內(nèi)一點(diǎn)B.各正三角形的某高線上的點(diǎn)
C.各正三角形的中心D.各正三角形外的某點(diǎn)

分析 由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時,常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).故我們可以根據(jù)已知中平面幾何中,關(guān)于線的性質(zhì)“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”,推斷出一個空間幾何中一個關(guān)于內(nèi)切球的性質(zhì).

解答 解:由平面中關(guān)于正三角形的內(nèi)切圓的性質(zhì):“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”,
根據(jù)平面上關(guān)于正三角形的內(nèi)切圓的性質(zhì)類比為空間中關(guān)于內(nèi)切球的性質(zhì),
我們可以推斷在空間幾何中有:
“正四面體的內(nèi)切球切于四面體各正三角形的位置是各正三角形的中心”
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖所示,棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,設(shè)D是A1C1上的點(diǎn)且A1B∥平面B1CD,則A1D:DC1的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=x2+4x+7-a的最小值為2,則函數(shù)y=f(x-2015)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b,c三個數(shù)成等差數(shù)列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,則b的值為(  )
A.2$\sqrt{6}$B.$\sqrt{6}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn且Sn=$\frac{3}{2}$an-n(n∈N*).
(1)求證:數(shù)列{an+1}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式.
(2)求證:$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+$\frac{{a}_{3}}{{a}_{4}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$>$\frac{n}{3}$-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若奇函數(shù)f(x)在[1,3]上有最小值2,則它在[-3,-1]上的最大值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.觀察下列的圖形中小正方形的個數(shù),則第6個圖中有(  )個小正方形,第n個圖中有(  )個小正方形( 。
A.28,$\frac{(n+1)(n+2)}{2}$B.14,$\frac{(n+1)(n+2)}{2}$C.28,$\frac{n}{2}$D.12,$\frac{{n}^{2}+n}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,程序的循環(huán)次數(shù)為3次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列結(jié)論:
①若A是B的必要不充分條件,則?B也是?A的必要不充分條件;
②“x≠2”是“x2≠4”的充分不必要條件;
③在△ABC中“sinA>sinB”是“A>B”的充要條件;
④若a、b是實(shí)數(shù),則“|a+b|=|a|+|b|”的充要條件是“ab≥0”.
其中正確的序號是( 。
A.①②B.①③④C.①③D.②④

查看答案和解析>>

同步練習(xí)冊答案