2.已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,a,b∈{1,2,3,4},則直線l1與直線l2沒有公共點的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{3}{16}$

分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件數(shù)是16,利用列舉法寫出滿足條件的事件數(shù),得到結(jié)果.

解答 解:直線l1的斜率${k_1}=\frac{1}{2}$,直線l2的斜率${k_2}=\frac{a}$.
a,b∈{1,2,3,4}的總事件數(shù)為(1,1),(1,2),(1,3),(1,4),
(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),
(4,1),(4,2),(4,3),(4,4)共16種.
若直線l1與直線l2沒有公共點,則l1∥l2,即k1=k2,即b=2a.
滿足條件的實數(shù)對(a,b)有(1,2)、(2,4)、共2種情形.
∴對應(yīng)的概率P=$\frac{2}{16}$=$\frac{1}{8}$.
故選:C

點評 本題考查等可能事件的概率,考查兩條直線的平行關(guān)系,利用列舉法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知ABCD是底角為60°的等腰梯形,其中AB∥CD,AD=4,DC=6,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,$\overrightarrow{CF}$=2$\overrightarrow{FB}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的值為$\frac{28}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),當(dāng)實數(shù)k為何值時,
(Ⅰ)k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-3$\overrightarrow$垂直?
(Ⅱ)k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-3$\overrightarrow$平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等差數(shù)列{an}滿足,若a22+a52=5.則S7的最大值是$\frac{35}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,短軸上端點為E,M(0,1)為線段OE的中點.
(1)求橢圓Γ的方程;(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若kAC•kBD=-$\frac{^{2}}{{a}^{2}}$.
(i)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最值;
(ii)求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C與y軸相切,圓心在直線x-2y=0上,且被x軸的正半軸截得的弦長為2$\sqrt{3}$.
(1)求圓C的方程;
(2)若點P(x,y)在圓C上,x2+y2-4y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的通項公式為an=1g($\sqrt{{n}^{2}+1}$-n),判斷數(shù)列{an}是否為單調(diào)數(shù)列,如是,請說明{an}的單調(diào)性;如不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-1,0),離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程:
(Ⅱ)過橢圓焦點F的直線l交橢圓于A、B兩點.
(1)若F是右焦點,y軸上一點M(0,$\frac{1}{3}$)滿足|MN|=|MB|,求直線1斜率k的值;
(2)若F是左焦點,設(shè)過點F且不與坐標(biāo)軸垂直的直線1交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和拋物線C2:y2=2px(p>0)都經(jīng)過點M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$),且橢圓C1的右焦點和拋物線C2的焦點F2相同.
(1)求C1,C2的方程;
(2)過F2作斜率為k的直線l和拋物線C2相交于A,B兩點,直線l和橢圓C1相交于C,D兩點,如圖,當(dāng)△CDF1的面積和△ABO的面積相等時,求斜率k的值.

查看答案和解析>>

同步練習(xí)冊答案