13.在△ABC中,求證:S△ABC=$\frac{{a}^{2}}{2(cotB+cotC)}$.

分析 由三角形面積公式可得S△ABC=$\frac{1}{2}$absinC,且由正弦定理可得:sinB=$\frac{2R}$,sinA=$\frac{a}{2R}$,利用同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理,化簡(jiǎn)等式右邊可證等于左邊,從而得證.

解答 解:∵S△ABC=$\frac{1}{2}$absinC,且由正弦定理可得:sinB=$\frac{2R}$,sinA=$\frac{a}{2R}$,
∴$\frac{{a}^{2}}{2(cotB+cotC)}$=$\frac{{a}^{2}}{2(\frac{cosB}{sinB}+\frac{cosC}{sinC})}$=$\frac{{a}^{2}}{2\frac{cosBsinC+cosCsinB}{sinBsinC}}$=$\frac{{a}^{2}}{2\frac{sinA}{sinBsinC}}$=$\frac{{a}^{2}sinBsinC}{2sinA}$=$\frac{{a}^{2}×\frac{2R}×sinC}{2×\frac{a}{2R}}$=$\frac{1}{2}$absinC=S△ABC
得證.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理,三角形面積公式在解三角形中的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓$\frac{x^2}{4}+{y^2}=1$上的一個(gè)動(dòng)點(diǎn),求z=3x+8y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若直線l經(jīng)過(guò)原點(diǎn),且與直線$y=\sqrt{3}x+2$的夾角為30°,則直線l方程為x=0或y=$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知⊙O的直徑AB垂直于弦CD于E,連結(jié) AD、BD、OC、OD,且 OD=5.
(1)求證:∠CDB=∠ADO;
(2)若sin∠BAD=$\frac{3}{5}$,求 CD 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)物體的運(yùn)動(dòng)方程是s=3tcost+x(x為常數(shù)),則其速度方程為( 。
A.v=3cost-3tsint+1B.v=3cost-3tsint
C.v=-3sintD.v=3cost+3tsint

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|x2-3x+2>0},集合B={y|y=2cosx+1},則(∁RA)∩B=( 。
A.(-∞,-1)∪(2,+∞)B.[1,2]C.[-1,1)∪(2,3]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{x}{x+1}$+2x-mln(x+1)在(0,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍為(  )
A.(-∞,2$\sqrt{2}$]B.(-∞,2$\sqrt{2}$)C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f(x)=|2x-1|,c<b<a,且f(c)>f(a)>f(b),則下列關(guān)系式正確的是( 。
A.a+c≤0B.a+c>0C.a+c≤0D.a+c<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓的方程為(x+2)2+y2=4.
(1)判斷直線x+4=0與圓的位置關(guān)系;
(2)一直線y=kx+3與圓有交點(diǎn),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案