分析 (I)根據(jù)面面垂直的性質(zhì)定理結(jié)合線面垂直的判定定理即可證明BD⊥平面PAC;
(Ⅱ)根據(jù)二面角的定義作出二面角的平面角,即可求二面角A-PC-B的余弦值.
解答 證明:(I)∵平面PAD⊥平面ABCD,PA⊥AD,
∴PA⊥平面ABCD,
∵BD?平面ABCD,
∴PA⊥BD,
∵AB=BC=AC=4,線段AC被線段BD平分,
∴BD⊥AC,
∵AC∩PA=A,
∴BD⊥平面PAC;
(Ⅱ)由(I)得BD⊥平面PAC,
則過E作EF⊥PC于F,連接BF,
則BF⊥PC,
即∠EFB是二面角A-PC-B的平面角,
∵AB=BC=AC=4,線段AC被線段BD平分,
∴CE=2,BE=2$\sqrt{3}$,
∵PA=AC=4,
∴∠PCA=45°,
則EF=CFcos45°=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
則BF=$\sqrt{B{E}^{2}+E{F}^{2}}$=$\sqrt{14}$,
即cos∠EFB=$\frac{EF}{BF}$=$\frac{\sqrt{2}}{\sqrt{14}}$=$\frac{\sqrt{7}}{7}$,
即二面角A-PC-B的余弦值是$\frac{\sqrt{7}}{7}$.
點(diǎn)評(píng) 本題主要考查面面垂直和線面垂直的判斷以及二面角的求解,利用二面角平面角的定義作出二面角的平面角是解決本題的關(guān)鍵.本題也可以使用向量法進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | -$\frac{7}{2}$ | C. | $\frac{7}{2}$或-$\frac{7}{2}$ | D. | 7或-7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com