11.己知,集合A={-3,-1,3,1},集合B={-2,-1,0,1,2},則A∪B( 。
A.{-3,-2,-1,1,2,3}B.M={-1,1}
C.M={0}D.M={-3,-2,-1,0,1,2,3}

分析 直接利用集合的并集的求法求解即可.

解答 解:集合A={-3,-1,3,1},集合B={-2,-1,0,1,2},則A∪B={-3,-2,-1,0,1,2,3}.
故選:D.

點(diǎn)評 本題考查并集的應(yīng)用,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,半徑為4的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知△ABC中,A(2,-7),B(4,-3).
(1)若點(diǎn)C坐標(biāo)為(-1,1),求過C點(diǎn)且與直線AB平行的直線l的方程;
(2)求邊AB的中垂線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某酒店將顧客的2輛不同的奔馳轎車、1輛現(xiàn)代轎車、3輛不同高爾夫轎車停放在一排6個車位上,則2輛奔馳轎車相鄰且奔馳轎車與現(xiàn)代轎車不相鄰的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某興趣小組有4名男生,5名女生.從中選派5名學(xué)生參加一次活動,要求必須2名男生,3名女生,且女生甲必須在內(nèi),有多少種選派方法?從中選派5名學(xué)生參加一次活動,要求有女生但人數(shù)必須少于男生,有多少種選派方法?分成三組,每組3人,有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ex+ax
(1)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(0,1)處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥e-x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直線L:y=k(x-5)與圓O:x2+y2=16相交于A、B兩點(diǎn),當(dāng)k變動時,求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.平面上三個力為F1、F2、F3作用于同一點(diǎn)且處于平衡狀態(tài),它們的大小分別為2N,3N,5N,則F1、F2的夾角為0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以下關(guān)于橢圓的命題中真命題的個數(shù)是( 。
?①“-3<m<5”是“方程$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1表示橢圓”的充要條件;
?②在平面直角坐標(biāo)系中,已知△ABC的頂點(diǎn)A(-3,0),B(3,0)且頂點(diǎn)C在橢圓$\frac{x^2}{25}+\frac{y^2}{16}$=1上,則$\frac{sinA+sinC}{sinB}$=$\frac{5}{3}$;
?③橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}$=1上的點(diǎn)到直線l:x+y=6距離的最小值為$\sqrt{2}$;
④橢圓C:$\frac{x^2}{4}+{y^2}$=1的內(nèi)接平行四邊形ABCD面積的最大值是4.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案