A. | 0 | B. | 4 | C. | 3 | D. | 2 |
分析 由已知推導(dǎo)出EF∥HG,從而EF∥平面BCD.由EF∥AC,得AC∥平面EFGH.同理可得BD∥平面EFGH,BD∥EH.從而得到AC⊥BD.由BD∥HG,得∠FHG是異面直線HF與BD所成的角,且為45°.從而得到BD≠AC.
解答 解:在四面體ABCD中,∵截面EFGH是正方形,
∴EF∥HG,EF?平面BCD,HG?平面BCD,∴EF∥平面BCD.
∵平面ACB∩平面ACD=AC,∴EH∥AC,∴AC∥平面EFGH.
同理可得BD∥平面EFGH,BD∥EF.
∵EF⊥EH,∴AC⊥BD.
∵BD∥HG,
∴∠FHG是異面直線HF與BD所成的角,且為45°.
由上面可知:BD∥EF,EH∥AC.
∴$\frac{EF}{BD}=\frac{AE}{AD}$,$\frac{EH}{AC}=\frac{DE}{AD}$,
而AE≠DE,EF=EH,∴BD≠AC.
綜上可知:①②④都正確,③錯(cuò)誤.
故選:C.
點(diǎn)評 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三角形ABC中,若三角形ABC為鈍角三角形,則cosA<0 | |
B. | 三角形ABC中,若三角形ABC為銳角三角形,則cosA≥0 | |
C. | 三角形ABC中,若三角形ABC為銳角三角形,則cosA<O | |
D. | 三角形ABC中,若三角形ABC為銳角或直角三角形,則cosA≥O |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C∩(A∪B) | B. | ∁UC∪(A∩B) | C. | ∁UC∩(A∩B) | D. | ∁UC∩(A∪B) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com