11.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+a≤0}\\{x≥1}\end{array}\right.$,且z=$\frac{3}{2}$x+y的最大值為4,則實數(shù)a=-1.

分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+a≤0}\\{x≥1}\end{array}\right.$,作出可行域如圖,

z=$\frac{3}{2}$x+y,可得y=-$\frac{3}{2}x+z$,平移直線y=-$\frac{3}{2}x+z$,由圖象可知,當直線經(jīng)過點A時,
z的最大值為4,
由$\left\{\begin{array}{l}{\frac{3}{2}x+y=4}\\{x+2y-4=0}\end{array}\right.$,可得A(2,1),直線的截距最大,此時z也最大,
可得:2-1+a=0.解得a=-1.
故答案為:-1.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知a為實數(shù),函數(shù)f(x)=alnx+x2-4x
(1)當a=1時,求函數(shù)f(x)在x=1處的切線方程;
(2)設(shè)g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.
(3)定義:若函數(shù)m(x)的圖象上存在兩點A、B,設(shè)線段AB的中點為P(x0,y0),若m(x)在點Q(x0,m(x0))處的切線l與直線AB平行或重合,則函數(shù)m(x)是“中值平均函數(shù)”,切線l叫做函數(shù)m(x)的“中值平均切線”.試判斷函數(shù)f(x)是否是“中值平均函數(shù)”?若是,判斷函數(shù)f(x)的“中值平均切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=log2sinx,當x∈[$\frac{π}{6}$,$\frac{3π}{4}$)時的值域為[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某超市五一促銷,隨機對10~60歲的人群抽查了n人,調(diào)查的每個人若能完整寫出5個或5個以上外國節(jié)日,則能獲得20元優(yōu)惠券的獎勵,若能完整寫出8個或8個以上中國傳統(tǒng)節(jié)日就能獲得30元優(yōu)惠券,調(diào)查的每個人都同時回答了這兩個問題,統(tǒng)計結(jié)果如下表
(Ⅰ)若以表中的頻率近似看作各年齡段回答問題獲得優(yōu)惠劵的概率,組織者隨機請一個家庭中的兩名成員(大人42歲,孩子16歲)回答這兩個問題,兩個調(diào)查相互獨立均無影響,分別寫出這個家庭兩個成員獲得獎勵的分布列并求該家庭獲得獎勵的期望;
(Ⅱ)求該家庭獲得獎勵為50元優(yōu)惠券的概率.
年齡段外國傳統(tǒng)節(jié)日中國傳統(tǒng)節(jié)日
獲優(yōu)惠劵的人數(shù)占本組人數(shù)頻率獲優(yōu)惠券的人數(shù)占本組人數(shù)頻率
[10,20)30a300.5
[20,30)480.8360.6
[30,40)360.6480.8
[40,50)200.524b
[50,60]40.2160.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=x2-cosx,則下列不等式成立的是( 。
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在棱長為1的正方體ABCD-A1B1C1D1中,點F是棱CC1的中點,P是正方體表面上的一點,若D1P⊥AF,則線段D1P長度的取值范圍是( 。
A.(0,$\sqrt{2}$)B.(0,$\frac{\sqrt{34}}{4}$]C.(0,$\frac{3}{2}$]D.(0,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),則sin($α+\frac{5π}{6}$)的值為(  )
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知m,n,l是三條不同直線,α,β,γ是三個不同平面,則下列說法正確的是( 。
A.若l∥n,n∥β,則l∥βB.若α⊥β,n∥α,m∥β,則m⊥n
C.若α⊥β,β⊥γ,則α∥γD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在平角坐標系xOy中,橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,且過點$(0,\sqrt{3})$,橢圓C的長軸的兩端點為A,B,點P為橢圓上異于A,B的動點,定直線x=4與直線PA、PB分別交于M,N兩點.
(1)求橢圓C的方程;
(2)在x軸上是否存在定點經(jīng)過以MN為直徑的圓,若存在,求定點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案