分析 (1)轉(zhuǎn)化為ax2-2x+1>0恒成立,利用二次函數(shù)性質(zhì)求解,
(2)理解函數(shù)的值域?yàn)镽,則ax2-2x+1能取遍所有的正數(shù),根二次函數(shù)性質(zhì)得出a>0且△=1-4a≥0.
(3)確定a>$\frac{3}{4}$,利用f(2)=lg(4a-3),f(3)=lg(9a-5),f($\frac{1}{a}$)=lg(1-$\frac{1}{a}$),f(x)的最大值與最小值的差等于1.即可求a的值.
解答 解:(1)∵函數(shù)的定義域?yàn)镽,
∴ax2-2x+1>0恒成立.
當(dāng)a=0時(shí),顯然不成立.
當(dāng)a≠0時(shí),應(yīng)有a>0且△=4-4a<0,
解得 a>1.
故a的取值范圍為:a>1,
(2)若函數(shù)的值域?yàn)镽,則ax2-2x+1能取遍所有的正數(shù),圖象不能在x軸上方
∴$\left\{\begin{array}{l}{a>0}\\{4-4a≥0}\end{array}\right.$或a=0
解得:0≤a≤1,
故a的取值范圍為[0,1];
(3)在x∈[2,3]時(shí),ax2-2x+1>0成立,∴a>-($\frac{1}{x}$-1)2+1成立,∴a>$\frac{3}{4}$,
∵f(2)=lg(4a-3),f(3)=lg(9a-5),f($\frac{1}{a}$)=lg(1-$\frac{1}{a}$),f(x)的最大值與最小值的差等于1.
∴|f(2)-f(3)|=1或|f(2)-f($\frac{1}{a}$)|=1或|f(3)-f($\frac{1}{a}$)|=1,
∴a=$\frac{\sqrt{65}-5}{4}$.
點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),不等式的運(yùn)用,屬于綜合題目,關(guān)鍵轉(zhuǎn)化為不等式,理解好二次函數(shù)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<a$<\frac{1}{2}$ | B. | $\frac{1}{2}$<a<1 | C. | a>2 | D. | a>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | [1,+∞) | C. | [0,+∞) | D. | (-∞,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com