17.已知函數(shù)f(x)的圖象如圖:則滿足f(2x)•f(lg(x2-6x+120))≤0的x的取值范圍是(  )
A.(-∞,1]B.[1,+∞)C.[0,+∞)D.(-∞,2]

分析 由x2-6x+120>100,可得lg(x2-6x+120))>2,即f(lg(x2-6x+120))<0,故有f(2x)≥0,2x ≤2,由此求得 x的范圍.

解答 解:由f(x)的圖象可得,f(x)≤0,等價(jià)于x≥2;,f(x)≥0,等價(jià)于x≤2.
∵f(2x)•f(lg(x2-6x+120))≤0,∵x2-6x+120=(x-3)2+111>100,
∴l(xiāng)g(x2-6x+120))>2,∴f(lg(x2-6x+120))<0,
∴f(2x)≥0,2x ≤2,∴x≤1,
故選:A.

點(diǎn)評 本題主要考查函數(shù)的圖象特征,解抽象不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=lg(ax2-2x+1).
(1)若f(x)的定義域?yàn)镽,求a的取值范圍;
(2)如f(x)的值域?yàn)镽,求a的取值范圍;
(3)若f(x)在x∈[2,3]時(shí)有意義,且f(x)的最大值與最小值的差等于1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且?x∈R,f(x+2)=-f(x).當(dāng)x∈[-2,0)時(shí),f(x)=2x,則f(2016)-f(2015)的值為( 。
A.-$\frac{1}{2}$B.$\frac{9}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P為棱A1B1中點(diǎn),點(diǎn)Q在側(cè)面DCC1D1內(nèi)運(yùn)動(dòng),若∠PBQ=∠PBD,則動(dòng)點(diǎn)Q的軌跡所在曲線為(  )
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知△ABC中,A(0,3),B(2,-1),P、Q分別為AC、BC的中點(diǎn),則直線PQ的斜率為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sinα+cos(α-$\frac{π}{6}$)=$\frac{4\sqrt{3}}{5}$,則sin(α+$\frac{π}{6}$)的值是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線x+y+1=0被圓O:x2+y2=r2(r>0)所截得的弦長為$\sqrt{2}$.
(Ⅰ) 求圓O的方程;
(Ⅱ) 如圖,圓O分別交x軸正、負(fù)半軸于點(diǎn)A,B,交y軸正半軸于點(diǎn)C,過點(diǎn)C的直線l交圓O于另一不同點(diǎn)D(點(diǎn)D與點(diǎn)A,B不重合),且與x軸相交于點(diǎn)P,直線AD與BC相交于點(diǎn)Q,求$\overrightarrow{OP}•\overrightarrow{OQ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.大風(fēng)車葉輪最高頂點(diǎn)離地面14.5米,風(fēng)車輪直徑為14米,車輪以每分鐘2周的速度勻速轉(zhuǎn)動(dòng).風(fēng)葉輪頂點(diǎn)從離地面最低點(diǎn)經(jīng)15秒后到達(dá)最高點(diǎn),假設(shè)風(fēng)葉輪離地面的高度y(m)與風(fēng)葉輪離地面最低點(diǎn)開始轉(zhuǎn)的時(shí)間t(s)建立一個(gè)數(shù)學(xué)模型,用函數(shù)y=asin[ω(t-b)]+c來表示,試求出其中四個(gè)參數(shù)a,b,c,ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若sinα=-$\frac{12}{13}$,α為第三象限的角,則cos($α+\frac{π}{4}$)等于(  )
A.$\frac{7}{13}$B.$\frac{7}{26}$C.-$\frac{7\sqrt{2}}{13}$D.$\frac{7\sqrt{2}}{26}$

查看答案和解析>>

同步練習(xí)冊答案