分析 (Ⅰ)設(shè)橢圓方程,由題意列關(guān)于a,b,c的方程組求解a,b,c的值,則橢圓方程可求;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨設(shè)y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的徑R,則△F1AB的周長=4a=8,${S}_{△{F}_{1}AB}$=$\frac{1}{2}$(|AB|+|F1A|+|F1B|)R=4R,因此${S}_{△{F}_{1}AB}$最大,R就最大.設(shè)直線l的方程為x=my+1,與橢圓方程聯(lián)立,從而可表示△F1AB的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論.
解答 解:(Ⅰ)由題意可設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$.
則$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得:a2=4,b2=3.
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的半徑R,
則△F1AB的周長=4a=8,${S_△}_{{F_1}AB}=\frac{1}{2}$(|AB|+|F1A|+|F1B|)R=4R,
因此${S_△}_{{F_1}AB}$最大,R就最大,
由題知,直線l的斜率不為零,可設(shè)直線l的方程為x=my+1,
由$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3m2+4)y2+6my-9=0,
${y}_{1}+{y}_{2}=\frac{-6m}{3{m}^{2}+4},{y}_{1}{y}_{2}=-\frac{9}{3{m}^{2}+4}$.
則${S_△}_{{F_1}AB}=\frac{1}{2}|{{F_1}{F_2}}|({y_1}-{y_2})$=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
令$\sqrt{{m}^{2}+1}=t$,則m2=t2-1,
∴${S_△}_{{F_1}AB}$=$\frac{12t}{3{t}^{2}+1}=\frac{12}{3t+\frac{1}{t}}$,
令f(t)=3t+$\frac{1}{t}$,則f′(t)=3-$\frac{1}{{t}^{2}}$,
當t≥1時,f′(t)≥0,f(t)在[1,+∞)上單調(diào)遞增,有f(t)≥f(1)=4,${S}_{△{F}_{1}AB}$≤3,
即當t=1,m=0時,${S}_{△{F}_{1}AB}$≤3,
由${S}_{△{F}_{1}AB}$=4R,得Rmax=$\frac{3}{4}$,這時所求內(nèi)切圓面積的最大值為$\frac{9}{16}π$.
故直線l:x=1,△F1AB內(nèi)切圓面積的最大值為$\frac{9}{16}π$.
點評 本題考查橢圓的標準方程的求法,考查直線與橢圓的位置關(guān)系,考查三角形面積的計算,考查學生分析解決問題的能力,分析得出${S}_{△{F}_{1}AB}$最大,R就最大是關(guān)鍵,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a∥b,且a?β,則α∥β | B. | 若α∥β,則a∥b | ||
C. | 若a∥b,且a?β,則a∥β | D. | 若a∥β,則a∥b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2π | B. | 3π | C. | 4π | D. | 6π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com