20.函數(shù)f(x)=Asin(ωx+ϕ)$(A>0,ω>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(1)分別求出A,ω,ϕ并確定函數(shù)f(x)的解析式;
(2)求出f(x)的單調(diào)遞增區(qū)間;
(3)求不等式-$\sqrt{2}$≤f(x)≤1的解集.

分析 (1)由題意和圖象可得A值,由周期公式可得ω,代入點($\frac{π}{12}$,$\sqrt{2}$)結(jié)合角的范圍可得;
(2)解不等式2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得;
(3)原不等式可化為-$\sqrt{2}$≤$\sqrt{2}$sin(2x+$\frac{π}{3}$)≤1,結(jié)合函數(shù)的圖象可得.

解答 解:(1)由題意和圖象可得A=$\sqrt{2}$,$\frac{3}{4}$•$\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{12}$,解得ω=2,
∴f(x)=$\sqrt{2}$sin(2x+ϕ),代入點($\frac{π}{12}$,$\sqrt{2}$)可得$\sqrt{2}$=$\sqrt{2}$sin($\frac{π}{6}$+ϕ),
∴$\frac{π}{6}$+ϕ=2kπ+$\frac{π}{2}$,解得ϕ=2kπ+$\frac{π}{3}$,結(jié)合|ϕ|<$\frac{π}{2}$可得ϕ=$\frac{π}{3}$,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$);
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z);
(3)不等式-$\sqrt{2}$≤f(x)≤1可化為-$\sqrt{2}$≤$\sqrt{2}$sin(2x+$\frac{π}{3}$)≤1,
變形可得-1≤sin(2x+$\frac{π}{3}$)≤$\frac{\sqrt{2}}{2}$,故2kπ+$\frac{3π}{4}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{9π}{4}$,
解得kπ+$\frac{5π}{24}$≤x≤kπ+$\frac{23π}{24}$,k∈Z
∴不等式-$\sqrt{2}$≤f(x)≤1的解集為[kπ+$\frac{5π}{24}$,kπ+$\frac{23π}{24}$]k∈Z.

點評 本題考查三角函數(shù)的故選和性質(zhì),涉及單調(diào)性和三角函數(shù)不等式的解集,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.若$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$=(1,2),$\overrightarrow{a}$+$\overrightarrow$=(4,-10),則$\overrightarrow{a}$等于( 。
A.(-2,-2)B.(2,2)C.(-2,2)D.(2,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.圓心在(1,1)的圓截直線y=x-2所得的弦長為2$\sqrt{2}$,則這個圓的方程為(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.用與球心距離為2的平面去截球,所得的截面面積為π,則球的表面積為(  )
A.$\frac{20π}{3}$B.20πC.12πD.100π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.株洲市某中學利用周末組織教職員工進行了一次秋季登石峰山健身的活動,有N人參加,現(xiàn)將所有參加人員按年齡情況分為[20,25),[25,30),[30,35],[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如圖所示.已知[35,40)之間的參加者有8人.
(1)求N和[30,35]之間的參加者人數(shù)N1;
(2)已知[30,35)和[35,40)之間各有2名數(shù)學教師,現(xiàn)從這兩個組中各選取2人擔任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有1名數(shù)學教師的概率?
(3)組織者從[45,50)之間的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數(shù)為ξ,求ξ的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列說法正確的是( 。
A.語句“x>0”是命題
B.若命題p為真命題,命題q為假命題,則p∨q為假命題
C.若命題p:?x∈R,x2+1≥0,則$?p:?{x_0}∈R,x_0^2+1≥0$
D.若一個命題的逆命題為假,則它的否命題一定為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知在正四面體A-BCD中,E,F(xiàn)分別是線段AB,CD的中點,則直線CE,AF的夾角的余弦值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R圖象的一條對稱軸是$x=\frac{3π}{8}$,且這條對稱軸與此函數(shù)圖象交于點$({\frac{3π}{8},2})$,這條對稱軸與相鄰對稱軸間的曲線交x軸于點$({\frac{5π}{8},0})$.    
(1)求這個函數(shù)的解析式.
(2)求函數(shù)f(x)在[0,π]內(nèi)的單調(diào)遞增區(qū)間;
(3)用“五點法”作出函數(shù)f(x)在一個周期內(nèi)的簡圖.(先列表,后畫圖)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若函f(x)=sin2ax-sinaxcosax(a>0)的圖象與直y=m(m>0)相切,并且切點的橫坐標依次成公差$\frac{π}{2}$的等差數(shù)列.
(Ⅰ)m的值;
(Ⅱ)若A(x0,y0)y=f(x)圖象的對稱中心,x0∈[0,$\frac{π}{2}$],求A的坐標.

查看答案和解析>>

同步練習冊答案