19.不等式ax+1<0的解集為($\frac{1}{3}$,+∞),則實(shí)數(shù)a=-3.

分析 由題意可得a<0,且ax+1=0的解為x=$\frac{1}{3}$,代入解方程即可得到所求a的值.

解答 解:由題意可得a<0,
且ax+1=0的解為x=$\frac{1}{3}$,
即有$\frac{1}{3}$a+1=0,
解得a=-3.
故答案為:-3.

點(diǎn)評(píng) 本題考查一次不等式的解法,注意運(yùn)用方程的思想,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,∠C=$\frac{π}{6}$,AC=2$\sqrt{3}$,AB=2,則BC的長(zhǎng)是( 。
A.2B.4C.2或4D.4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若f(x)為奇函數(shù),且對(duì)任意實(shí)數(shù)x恒有f(x+3)-f(x-1)=0,則f(2)=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)1的立方虛根ω=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,?=$-\frac{1}{2}$$-\frac{\sqrt{3}}{2}$i.
(1)試求ω1,ω2,ω3,ω4,ω5,ω6,由此推斷ωn(n∈N*)規(guī)律,并把這個(gè)規(guī)律用式子表示出來(lái).
(2)在等比數(shù)列{ωn}中,若ω1=1,ω2=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,根據(jù)(1)的規(guī)律計(jì)算:ω12+…+ω12的值;
(3)已知n∈N*,f(n)=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n+($-\frac{1}{2}$$-\frac{\sqrt{3}}{2}$i)n,試化解集合A={f(n)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.用分析法證明:在△ABC中,如果∠A的外角平分線與三角形的外接圓相交于點(diǎn)D,那么BD=CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.與如圖所示的圖象相符的函數(shù)是( 。
A.y=sinx-|sinx|B.y=|sinx|+sinxC.y=|sinx|D.y=|sinx|-sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)是滿足f(x+2)=-f(x)的奇函數(shù),且當(dāng)0≤x<1時(shí),f(x)=(x-$\frac{1}{2}$)2-1.
(1)證明:4是函數(shù)f(x)的一個(gè)周期;
(2)求當(dāng)7<x≤8時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.從3件正品2件次品中任意抽取3件進(jìn)行檢查,則2件次品都被抽出的概率是$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),若向量$\overrightarrow{a}$+$λ\overrightarrow$與$\overrightarrow$垂直,則λ=-$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案