11.已知函數(shù)f(x)是滿足f(x+2)=-f(x)的奇函數(shù),且當(dāng)0≤x<1時(shí),f(x)=(x-$\frac{1}{2}$)2-1.
(1)證明:4是函數(shù)f(x)的一個(gè)周期;
(2)求當(dāng)7<x≤8時(shí),f(x)的解析式.

分析 (1)由函數(shù)f(x)是滿足f(x+2)=-f(x),可得f(x+4)=f(x),結(jié)合函數(shù)周期性的概念,可得結(jié)論;
(2)當(dāng)7<x≤8時(shí),-1<x-8≤0,0≤8-x<1,又由f(x)是周期為4的奇函數(shù),可得f(x)=-f(-x)=-f(8-x),代入化簡(jiǎn)可得答案.

解答 證明:(1)∵f(x+2)=-f(x)
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
故4是函數(shù)f(x)的一個(gè)周期;
(2)當(dāng)7<x≤8時(shí),-1<x-8≤0,0≤8-x<1,
又∵f(x)是周期為4的奇函數(shù)
∴f(x)=-f(-x)=-f(8-x)=-[(8-x-$\frac{1}{2}$)2-1]=$-{x}^{2}+15x-\frac{221}{4}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)的周期性,函數(shù)的解析式的求法,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)直四棱柱的側(cè)棱長(zhǎng)等于2,底面是邊長(zhǎng)為1的正方形,如果其俯視圖是一個(gè)面積為1的正方形,其側(cè)視圖的面積的取值范圍是(  )
A.[1,2]B.[2,2$\sqrt{2}$]C.[1,2$\sqrt{2}$]D.[$\sqrt{3}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)為z(x,y),若復(fù)數(shù)滿足|z-1|2=(z-1)2,則點(diǎn)Z(x,y)的軌跡方程是y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式ax+1<0的解集為($\frac{1}{3}$,+∞),則實(shí)數(shù)a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若(1+x)n+(1+x${\;}^{\frac{1}{2}}$)n+(1+x${\;}^{\frac{1}{3}}$)n+…+(1+x${\;}^{\frac{1}{n}}$)n(n∈N*)的展開式中x的系數(shù)是an,展開式中所有項(xiàng)的系數(shù)和為bn,則$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,且a3+a5+a10+a12=64,則a7+a8=( 。
A.16B.64C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求證:
(1)sinθ-sinφ=2cos$\frac{θ+φ}{2}$sin$\frac{θ-φ}{2}$;
(2)cosθ+cosφ=2cos$\frac{θ+φ}{2}$cos$\frac{θ-φ}{2}$;
(3)cosθ-cosφ=-2sin$\frac{θ+φ}{2}$sin$\frac{θ-φ}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=ax2+2x+1的圖象與直線y=3x相切,則a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),$\overrightarrow{c}$=(1,2).用$\overrightarrow{a},\overrightarrow$表示$\overrightarrow{c}$,則$\overrightarrow{c}$=$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.

查看答案和解析>>

同步練習(xí)冊(cè)答案