1.設(shè)全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},則(∁UA)∩(∁UB)=( 。
A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,4,5,6}

分析 根據(jù)補集與交集的定義,進行化簡與運算即可.

解答 解:全集U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},
集合A={1,3,7},
∴∁UA={0,2,4,5,6,8};
B={2,3,8},
∴∁UB={0,1,4,5,6,7};
∴(∁UA)∩(∁UB)={0,4,5,6}.

點評 本題考查了補集與交集的運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)$\frac{π}{2}$<α<π,若sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{2π}{3}$+α)=( 。
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在四面體ABCD中,E、G分別是CD、BE的中點,若$\overrightarrow{AG}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{AC}$,則x+y+z=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,N為BC中點,則$\overrightarrow{MN}$=(  )
A.-$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知△ABC外接圓的圓心為O,$AB=2\sqrt{3}$,$AC=2\sqrt{2}$,A為鈍角,M是BC邊的中點,則$\overrightarrow{AM}•\overrightarrow{AO}$=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知0<θ<π,tan(θ+$\frac{π}{4}$)=$\frac{1}{7}$,那么sinθ+cosθ=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow m=({cosA,sinB}),\overrightarrow n=({cosB,-sinA})$,$\overrightarrow m•\overrightarrow n=-cos2C$,且A,B,C分別為△ABC的三邊a,b,c所對的角.
(I)求角C的大小;
(Ⅱ)若a+b=2c,且△ABC的面積為$15\sqrt{3}$,求c邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.直線2x+3y+6=0與坐標軸所圍成的三角形的面積為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=log2(2x+1)+ax(a∈R).
(1)若函數(shù)f(x)是定義在R上的偶函數(shù),求a的值;
(2)若a=0,試用定義法證明函數(shù)f(x)在R上是增函數(shù);
(3)若不等式f(x)+f(-x)≥mt+m對任意x∈R,t∈[-2,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案