9.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,N為BC中點,則$\overrightarrow{MN}$=( 。
A.-$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

分析 根據(jù)題意,利用空間向量的線性表示與運算,用$\overrightarrow{DA}$、$\overrightarrow{DB}$與$\overrightarrow{DC}$表示出$\overrightarrow{MN}$.

解答 解:連接DN,如圖所示,

四面體ABCD中,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,
點M在棱DA上,$\overrightarrow{DM}$=2$\overrightarrow{MA}$,∴$\overrightarrow{DM}$=$\frac{2}{3}$$\overrightarrow{DA}$,
又N為BC中點,∴$\overrightarrow{DN}$=$\frac{1}{2}$($\overrightarrow{DB}$+$\overrightarrow{DC}$);
∴$\overrightarrow{MN}$=$\overrightarrow{MD}$+$\overrightarrow{DN}$=-$\frac{2}{3}$$\overrightarrow{DA}$+$\frac{1}{2}$$\overrightarrow{DB}$+$\frac{1}{2}$$\overrightarrow{DC}$=-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$.
故選:B.

點評 本題考查了空間向量的線性表示與運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知頂點在原點,對稱軸為y軸的拋物線C過點(2,-2).
(1)求拋物線C的方程;
(2)若拋物線C與過點P(0,-1)的直線l相交于A,B兩點,O為坐標原點,若直線OA和OB的斜率之和為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖莖葉圖記錄了甲、乙兩組各五名學生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的平均數(shù)為18,乙組數(shù)據(jù)的中位數(shù)為16,則x,y的值分別為( 。
A.18,6B.8,16C.8,6D.18,16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,四邊形ABCD為正方形,E為AB的中點,F(xiàn)為AD上靠近D的三等分點,若向正方形內(nèi)隨機投擲一個點,則該點落在△CEF內(nèi)的概率為( 。
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知p:方程方程 $\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦點在y軸上的橢圓;q:實數(shù)m滿足m2-(2a+1)m+a2+a<0且¬q是¬p的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=ax-1-2(a>0,a≠1)的圖象恒過定點A,若點A在直線mx-ny-1=0上,其中m>0,n>0,則$\frac{1}{m}+\frac{2}{n}$的最小值為( 。
A.4B.5C.6D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},則(∁UA)∩(∁UB)=(  )
A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)=2x,若$p=f({\sqrt{ab}})$,$q=f({\frac{a+b}{2}})$,$r=\frac{1}{2}({f(a)+f(b)})$,其中,a>b>0,則下列關(guān)系中正確的是(  )
A.p<r<qB.q<p<rC.r<p<qD.p<q<r

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,圓C1:x2+(y-2)2=$\frac{1}{4}$,橢圓C2:x2+4y2=4,以坐標原點為極點,x軸正半軸為極軸建立極坐標系
(I)求C1、C2的極坐標方程;
(Ⅱ)若P,Q分別是圓C1,橢圓C2,橢圓C2上的任意點,求|PQ|的最大值及相應(yīng)的點Q坐標.

查看答案和解析>>

同步練習冊答案