12.已知定義在R上的函數(shù)y=f(x)滿足f(2-x)=f(2+x),f(7-x)=f(7+x),f(3)=0,且該函數(shù)在區(qū)間[0,7]內(nèi)再?zèng)]有其它的值使f(x)=0,則此函數(shù)為( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

分析 根據(jù)條件判斷函數(shù)的周期性,根據(jù)函數(shù)奇偶性和周期性的關(guān)系進(jìn)行判斷即可.

解答 解:∵f(2-x)=f(2+x),f(7-x)=f(7+x),
∴f(x)=f(4-x),f(x)=f(14-x),
則f(4-x)=f(14-x),
即f(x+10)=f(x),則函數(shù)f(x)是周期為10的周期函數(shù),
∵f(3)=0,f(7)≠0,
∴f(-3)=f(7)≠0,
則f(3)≠f(-3)且f(3)≠-f(3),
故函數(shù)y=f(x)是非奇非偶函數(shù);
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)條件判斷函數(shù)的周期性以及利用函數(shù)奇偶性的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知(ax-1)5的展開(kāi)式中的x3系數(shù)為80,則其展開(kāi)式中x2的系數(shù)為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)單位向量,且向量$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,且$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=0,求實(shí)數(shù)x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow$=x=1,求向量$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+$\frac{π}{6}$),它們相交于A、B兩點(diǎn).
(1)寫(xiě)出兩條曲線的直角坐標(biāo)方程;
(2)求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.作出函數(shù)y=($\frac{1}{3}$)|x-1|和y=-2cosπx的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義在全體正實(shí)數(shù)上的函數(shù)f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知函數(shù)y=f′(x)的圖象如圖所示lnb≥ln2a且f(2a+b)≥1,則$\frac{3b+6}{2a+4}$的取值范圍是( 。
A.[1,+∞]B.[2,+∞]C.[$\frac{3}{4}$,2]D.[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)x,t滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{3x-2y+6≥0}\end{array}\right.$,向量$\overrightarrow{a}$=(y,a+x),$\overrightarrow$=(2,-1),且$\overrightarrow{a}$∥$\overrightarrow$,若令y=f(x),則f(x)=-2x-2a,a的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各式恒成立的是( 。
A.tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$B.$\frac{1+cos2α}{2}$=cos2α
C.$\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=tanαD.±$\sqrt{\frac{1-cosα}{1+cosα}}$=tan$\frac{α}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案