A. | [1,+∞] | B. | [2,+∞] | C. | [$\frac{3}{4}$,2] | D. | [0,3] |
分析 先根據(jù)導(dǎo)函數(shù)的圖象判斷原函數(shù)的單調(diào)性,從而確定a、b的關(guān)系式,根據(jù)線性規(guī)劃求出斜率的最小值,問(wèn)題得以解決.
解答 解:由圖可知,當(dāng)x>0時(shí),導(dǎo)函數(shù)f'(x)>0,原函數(shù)單調(diào)遞增
∵兩正數(shù)a,b滿足f(2a+b)≥1,f(4)=1
∴2a+b≥4,
∵lnb≥ln2a,
∴b≥2a,
又由a>0.b>0,
$\frac{3b+6}{2a+4}$=$\frac{3}{2}$($\frac{b+2}{a+2}$),
點(diǎn)(a,b)的區(qū)域?yàn)閳D中陰影部分,包括邊界,
$\frac{b+2}{a+2}$的幾何意義是區(qū)域的點(diǎn)與A(-2,-2)連線的斜率,
聯(lián)立$\left\{\begin{array}{l}{b=2a}\\{2a+b=4}\end{array}\right.$,解得a=1,b=2,
即B(1,2),
當(dāng)目標(biāo)函數(shù)過(guò)點(diǎn)B時(shí),斜率最小,即為$\frac{2+2}{1+2}$=$\frac{4}{3}$,
∴$\frac{3b+6}{2a+4}$=$\frac{3}{2}$($\frac{b+2}{a+2}$)≥$\frac{3}{2}$×$\frac{4}{3}$=2,
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及目標(biāo)函數(shù)得一、幾何意義是解決本題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com