20.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PB,且側(cè)面PAB⊥平面ABCD,點E是棱AB的中點.
(1)求證:PE⊥AD;
(2)若∠ADC=$\frac{π}{3}$,求證:平面PEC⊥平面PAB.

分析 (1)由等腰三角形的性質(zhì)和面面垂直的性質(zhì)定理,可得PE⊥平面ABCD,再由線面垂直的性質(zhì),即可得證;
(2)由線面垂直的判定定理可得AB⊥平面PEC,再由面面垂直的判定定理即可得證.

解答 證明:(1)因為PA=PB,點E是棱AB的中點,
所以PE⊥AB,
因為平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE?平面PAB,
所以PE⊥平面ABCD,
因為AD?平面ABCD,
所以PE⊥AD;
(2)依題意,有CA=CB,點E是棱AB的中點,
所以CE⊥AB,
由(1)可得PE⊥AB,
所以AB⊥平面PEC,
又因為AB?平面PAB,
所以平面PAB⊥平面PEC.

點評 本題考查空間線面垂直和面面垂直的判定和性質(zhì)的運用,考查空間想象能力和邏輯推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=$\sqrt{m{x^2}+6mx+m+8}$的定義域為R,求實數(shù)m的取值范圍是( 。
A.[0,1]B.(0,1)C.(0,2)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列敘述中正確命題的個數(shù)是2.
①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
③垂直于同一直線的兩個平面相互平行;④若兩個平面垂直,那么垂直于其中一個平面的直線與另一個平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O是△ABC所在平面內(nèi)一點.
(1)已知D為BC邊中點,且2$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,證明:$\overrightarrow{AO}=\overrightarrow{OD.}$;
(2)已知$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,△BOC的面積為2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)在x0處可導(dǎo),試求極限$\underset{lim}{n→∞}$n[f(x0+$\frac{3}{n}$)-f(x0)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,一條準(zhǔn)線方程為x=3,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}滿足a1=1,$\frac{{a}_{n}+1}{n+1}$=$\frac{{a}_{n}}{n}$+1,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=3n•$\sqrt{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列幾個命題:
①方程x2+(a-3)x+a=0若有一個正實根,一個負(fù)實根,則a<0;
②函數(shù)f(x)=a是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域為(-3,1);
④一條曲線y=|3-x2|和直線y=a,(a∈R)的公共點個數(shù)是M,則M的值不可能是1;
其中正確的有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)若f(x)+f($\frac{x-1}{x}$)=1+x,求f(x);
(2)若2f(x)+f(1-x)=1+x,求f(x).

查看答案和解析>>

同步練習(xí)冊答案