分析 (Ⅰ)x=$\frac{π}{3}$時(shí),可以求出向量$\overrightarrow{a}$的坐標(biāo),然后根據(jù)$cos<\overrightarrow{a},\overrightarrow{c}>=\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$即可求出$cos<\overrightarrow{a},\overrightarrow{c}>$,從而可以得出向量$\overrightarrow{a},\overrightarrow{c}$的夾角;
(Ⅱ)進(jìn)行向量數(shù)量積的坐標(biāo)運(yùn)算得出$\overrightarrow{a}•\overrightarrow$的值,從而得到$f(x)=\frac{\sqrt{2}λ}{2}sin(2x-\frac{π}{4})+\frac{λ}{2}$,可以求出$2x-\frac{π}{4}∈[-π,\frac{π}{4}]$,討論λ>0和λ<0兩種情況,根據(jù)f(x)的最大值為$\frac{1}{2}$便可建立關(guān)于λ的方程,從而便可求出λ的值.
解答 解:(Ⅰ)$x=\frac{π}{3}$時(shí),$\overrightarrow{a}=(\frac{\sqrt{3}}{2},\frac{1}{2})$;
∴$cos<\overrightarrow{a},\overrightarrow{c}>=\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}=\frac{-\frac{\sqrt{3}}{2}}{1•1}=-\frac{\sqrt{3}}{2}$;
∴$<\overrightarrow{a},\overrightarrow{c}>=\frac{5π}{6}$;
即向量$\overrightarrow{a},\overrightarrow{c}$的夾角為$\frac{5π}{6}$;
(Ⅱ)$\overrightarrow{a}•\overrightarrow=si{n}^{2}x+sinxcosx=\frac{1-cos2x}{2}+\frac{1}{2}sin2x$=$\frac{\sqrt{2}}{2}sin(2x-\frac{π}{4})+\frac{1}{2}$;
∴$f(x)=\frac{\sqrt{2}λ}{2}sin(2x-\frac{π}{4})+\frac{λ}{2}$;
∵$x∈[-\frac{3π}{8},\frac{π}{4}]$;
∴$2x-\frac{π}{4}∈[-π,\frac{π}{4}]$;
①若λ<0,則$2x-\frac{π}{4}=-\frac{π}{2}$時(shí),f(x)取最大值$-\frac{\sqrt{2}λ}{2}+\frac{λ}{2}=\frac{1}{2}$;
∴$λ=-1-\sqrt{2}$;
②若λ>0,則$2x-\frac{π}{4}=\frac{π}{4}$時(shí),f(x)取最大值$\frac{\sqrt{2}λ}{2}•\frac{\sqrt{2}}{2}+\frac{λ}{2}=\frac{1}{2}$;
∴$λ=\frac{1}{2}$.
點(diǎn)評(píng) 考查向量夾角余弦的坐標(biāo)公式,已知三角函數(shù)值求角,向量數(shù)量積的坐標(biāo)運(yùn)算,二倍角的正余弦公式,以及正弦函數(shù)在閉區(qū)間上的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期是2π | |
B. | 函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長度得到 | |
C. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對(duì)稱 | |
D. | 函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y+2)2=3 | B. | (x-1)2+(y+2)2=9 | C. | (x-1)2+(y-2)2=4 | D. | (x-1)2+(y-2)2=12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com