13.已知集合A={y|y=$\sqrt{2-x}$},B={x|x2-2x>0},則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

分析 求出A中y的范圍確定出A,求出B中不等式的解集確定出B,找出兩集合的交集、并集以及兩集合的包含關(guān)系,即可作出判斷.

解答 解:由y=$\sqrt{2-x}$≥0,得到A=[0,+∞),
由x2-2x>0,變形得:x(x-2)>0,
解得:x<0或x>2,即B=(-∞,0)∪(2,+∞),
∴A∩B=(2,+∞),A∪B=R,
故選:B.

點(diǎn)評(píng) 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{m}$=(cosα,sinα),$\overrightarrow{n}$=(4,3),α∈(-$\frac{π}{2}$,$\frac{π}{2}$),若$\overrightarrow{m}$∥$\overrightarrow{n}$,則cos(α-$\frac{π}{2}$)=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)兩個(gè)非零向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$不共線.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),求證:A、B、D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k,使k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$共線;
(3)若$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的兩個(gè)單位向量,試確定k的值,使$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$與k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知項(xiàng)數(shù)相同的等比數(shù)列{an}和{bn},公比為q1,q2(q1,q2≠1),則下列數(shù)列①{3an};②{$\frac{2}{{a}_{n}}$};③{3${\;}^{{a}_{n}}$};④{2an-3bn};⑤{2an•3bn}中為等比數(shù)列的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知不等式|x-2|<3的解集為 A,函數(shù)y=ln(1-x)的定義域?yàn)锽,則圖中陰影部分表示的集合為{x|1≤x<5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=-$\frac{6}{\sqrt{1+8si{n}^{2}θ}}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}α}\\{y=-3-α}\end{array}\right.$(α為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知點(diǎn)A(-4,-3),B(2,9),圓C是以線段AB為直徑的圓.
(1)求圓C的方程;
(2)設(shè)點(diǎn)P(0,2)則求圓內(nèi)以P為中點(diǎn)的弦所在的直線l0的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),則不等式f(lnx)<-f(1)的解集為(  )
A.(e,+∞)B.(${\frac{1}{e}$,+∞)C.(${\frac{1}{e}$,e)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算下列各式:
(1)(0.064)${\;}^{-\frac{1}{3}}}$-(-$\frac{7}{8}}$)0+[(-2)3]${\;}^{-\frac{4}{3}}}$+16-0.75+|-0.01|${\;}^{\frac{1}{2}}}$
(2)2(lg$\sqrt{2}$)2+lg$\sqrt{2}$•lg5+$\sqrt{{{(lg\sqrt{2})}^2}-lg2+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案