5.在平面直角坐標(biāo)系中,若點(1,1)的坐標(biāo)滿足線性約束條件:$\left\{\begin{array}{l}{ax+by≤2}\\{by-ax≤2}\\{ay≥1}\end{array}\right.$,則$\frac{a}$的取值范圍是(-∞,1].

分析 先畫出滿足約束條件的平面區(qū)域,結(jié)合$\frac{a}$的幾何意義判斷即可.

解答 解:將點(1,1)代入$\left\{\begin{array}{l}{ax+by≤2}\\{by-ax≤2}\\{ay≥1}\end{array}\right.$,
得:$\left\{\begin{array}{l}{a+b≤2}\\{b-a≤2}\\{a≥1}\end{array}\right.$,畫出滿足約束條件的平面區(qū)域,如圖示:

由$\left\{\begin{array}{l}{a=1}\\{a+b=2}\end{array}\right.$解得A(1,1),
而$\frac{a}$的幾何意義表示過平面區(qū)域內(nèi)的點與原點的直線的斜率,
由圖象得$\frac{a}$≤1,
故答案為:(-∞,1].

點評 本題考察了簡單的線性規(guī)劃問題,考察數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點為F1、F2,P是雙曲線上的一點(P不在x軸上),△PF1F2的內(nèi)切圓與x軸切與點A,且A到該雙曲線漸近線的距離為$\frac{3}$,則雙曲線的離心率為( 。
A.2B.3C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{lo{g}_{2}x-1}{2lo{g}_{2}x+1}$(x>2),已知f(x1)+f(x2)=$\frac{1}{2}$,則f(x1x2)的最小值=$\frac{4}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,則二項式(x2+x+y)a展開式中x5y2項的系數(shù)為( 。
A.120B.80C.60D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知△ABC的三個內(nèi)角A,B,C所對應(yīng)的邊長分別為a,b,c,B=$\frac{π}{4}$,b=4.則ac的最大值為8(2+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)x>1,y>0,xy+x-y=2$\sqrt{2}$,則xy-x-y等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,且f(1)=$\frac{1}{3}$,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在定義域上的單調(diào)性,并證明;
(3)求證:方程f(x)-lnx=0至少有一根在區(qū)間(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)點O為△ABC內(nèi)的一點,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$,則點O是△ABC的垂心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知關(guān)于x的方程2x2-($\sqrt{3}$+1)x+m=0的兩根為sinθ和cosθ,θ∈[0,2π].求
(1)$\frac{sinθ}{1-\frac{1}{tanθ}}$+$\frac{cosθ}{1-tanθ}$的值
(2)m的值
(3)方程的兩根及θ的值.

查看答案和解析>>

同步練習(xí)冊答案