9.復(fù)數(shù)$\frac{2-i}{1-i}$的共軛復(fù)數(shù)是( 。
A.$\frac{3+i}{2}$B.$\frac{1-i}{2}$C.$\frac{3-i}{2}$D.$\frac{-3-i}{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)$\frac{2-i}{1-i}$,則答案可求.

解答 解:∵$\frac{2-i}{1-i}$=$\frac{(2-i)(1+i)}{(1-i)(1+i)}=\frac{3+i}{2}$,
∴復(fù)數(shù)$\frac{2-i}{1-i}$的共軛復(fù)數(shù)是:$\frac{3-i}{2}$.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合D=$\left\{{(x,y)\left|{\frac{x^2}{4}+\frac{y^2}{3}=1}\right.}\right\}$,有下面四個(gè)命題:
p1:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$≥3        p2:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$<1
p3:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$<4        p4:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$≥2
其中的真命題是( 。
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過原點(diǎn)作一條傾斜角為θ的直線與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$交于A、B兩點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),若AF⊥BF,且該橢圓的離心率$e∈[{\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{3}}]$,則θ的取值范圍為$[{\frac{π}{6},\frac{5π}{6}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的點(diǎn)到直線4x-5y+40=0的最小距離為$\frac{15\sqrt{41}}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)數(shù)列:1,a1,a2,a3,81成等比數(shù)列,則圓錐曲線${x^2}+\frac{y^2}{a_2}=1$的離心率是(  )
A.$\sqrt{10}$ 或$\frac{{2\sqrt{2}}}{3}$B.$\sqrt{10}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{1}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:?x<1,都有l(wèi)og${\;}_{\frac{1}{3}}}$x<0,命題q:?x∈R,使得x2≥2x成立,則下列命題是真命題的是( 。
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.不等式|x-1|-|x-4|>2的解集為{x|x>$\frac{7}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則它的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是一空間幾何體的三視圖,尺寸如圖(單位:cm).則該幾何體的表面積是18+2$\sqrt{3}$cm2

查看答案和解析>>

同步練習(xí)冊答案