分析 由已知及二倍角的余弦函數(shù)公式可求cosB,進而利用同角三角函數(shù)基本關系式可求sinB,結合C=$\frac{π}{4}$,利用兩角和的正弦函數(shù)公式可求sinA的值,由正弦定理即可計算得解c的值.
解答 解:在△ABC中,∵cos$\frac{B}{2}$=$\frac{2\sqrt{5}}{5}$,
∴cosB=2cos2$\frac{B}{2}$-1=$\frac{3}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∵C=$\frac{π}{4}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}×\frac{\sqrt{2}}{2}+$$\frac{3}{5}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
∴由正弦定理可得:c=$\frac{asinC}{sinA}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{7\sqrt{2}}{10}}$=$\frac{10}{7}$.
點評 本題主要考查了二倍角的余弦函數(shù)公式,同角三角函數(shù)基本關系式,兩角和的正弦函數(shù)公式,正弦定理等知識在解三角形中的應用,熟練掌握相關公式定理是解題的關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{a}$-$\overrightarrow$ | B. | 2($\overrightarrow$-$\overrightarrow{a}$) | C. | 2($\overrightarrow{a}$-$\overrightarrow$) | D. | $\overrightarrow$-$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{5}}}{5},1})$ | B. | $[{\frac{{\sqrt{2}}}{2},1})$ | C. | $({0,\frac{{\sqrt{5}}}{5}}]$ | D. | $({0,\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com