18.已知在等比數(shù)列{an}中,前n項(xiàng)和${S_n}={2^n}+t$,則數(shù)列的通項(xiàng)公式an=2n-1

分析 由題意寫出數(shù)列的前3項(xiàng),解方程可得t值,可得數(shù)列的首項(xiàng)和公比,可得通項(xiàng)公式.

解答 解:∵等比數(shù)列{an}中,前n項(xiàng)和${S_n}={2^n}+t$,
∴a1=S1=2+t,a2=S2-S1=2,a3=S3-S2=4,
∴22=4(2+t),解得t=-1,
∴a1=2+t=1,公比q=2,
∴an=2n-1
故答案為:2n-1

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式,求出數(shù)列的首項(xiàng)和公比是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某樂園按時段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過1小時收費(fèi)10元,超過1小時的部分每小時收費(fèi)8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$cos(\frac{π}{4}+θ)=\frac{2}{3}\sqrt{2}$,則sin2θ=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$-\frac{8}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.橢圓C1與C2的中心在原點(diǎn),焦點(diǎn)分別在x軸與y軸上,它們有相同的離心率$e=\frac{{\sqrt{2}}}{2}$,并且C2的短軸為C1的長軸,C1與C2的四個焦點(diǎn)構(gòu)成的四邊形面積是$2\sqrt{2}$.
(Ⅰ)求橢圓C1與C2的方程;
(Ⅱ)設(shè)P是橢圓C2上非頂點(diǎn)的動點(diǎn),P與橢圓C1長軸兩個頂點(diǎn)A,B的連線PA,PB分別與橢圓C1交于點(diǎn)E,F(xiàn).
(1)求證:直線PA,PB斜率之積為常數(shù);
(2)直線AF與直線BE的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=1-2{cos^2}(x+\frac{π}{4})$,下列說法正確的是( 。
A.f(x)是最小正周期為π的奇函數(shù)B.f(x)是最小正周期為π的偶函數(shù)
C.f(x)是最小正周期為$\frac{π}{2}$的偶函數(shù)D.f(x)是最小正周期為$\frac{π}{2}$的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距是2,離心率是$\frac{1}{2}$.
(1)求橢圓的方程;
(2)若直線l:y=x+1與橢圓C相交于點(diǎn)P,Q,試求出線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓M:(x+$\sqrt{7}$)2+y2=64,定點(diǎn)N($\sqrt{7}$,0),點(diǎn)P為圓M上的動點(diǎn),點(diǎn)Q在NP上,點(diǎn)G 在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點(diǎn)G的軌跡方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{64}+\frac{y^2}{57}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{64}-\frac{y^2}{57}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等比數(shù)列{an}中,S2=2,S4=8,則S6=( 。
A.-32B.32C.-26D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}中,a1=2,$\frac{a_{n+1}-1}{a_n-1}$=3,若an≤100,則n的最大值為(  )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案