10.已知A,B是雙曲線C的兩個(gè)頂點(diǎn),直線l與雙曲線C交于不同的兩點(diǎn)P,Q,且與實(shí)軸所在直線垂直,若$\overrightarrow{PB}$•$\overrightarrow{AQ}$=0,則雙曲線C的離心率e=$\sqrt{2}$.

分析 設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),設(shè)直線x=t,代入雙曲線的方程,求得P,Q的坐標(biāo),A,B的坐標(biāo),由于向量的坐標(biāo)和數(shù)量積的坐標(biāo)表示,計(jì)算即可得到離心率.

解答 解:設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
設(shè)直線x=t,代入雙曲線的方程可得y=±b$\sqrt{\frac{{t}^{2}}{{a}^{2}}-1}$,
由題意可得A(-a,0),B(a,0),P(t,b$\sqrt{\frac{{t}^{2}}{{a}^{2}}-1}$),Q(t,-b$\sqrt{\frac{{t}^{2}}{{a}^{2}}-1}$),
即有$\overrightarrow{PB}$•$\overrightarrow{AQ}$=(a-t,-b$\sqrt{\frac{{t}^{2}}{{a}^{2}}-1}$)•(a+t,-b$\sqrt{\frac{{t}^{2}}{{a}^{2}}-1}$)
=(a-t)(a+t)+b2($\frac{{t}^{2}}{{a}^{2}}$-1)=a2-t2+$\frac{^{2}}{{a}^{2}}$(t2-a2)=0,
由于t≠a,可得a=b,
即有e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+^{2}}}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,考查向量的數(shù)量積的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x≥a}\\{-{x}^{2}+2x-1,x<a}\end{array}\right.$對(duì)于任意的實(shí)數(shù)b,函數(shù)y=f(x)-b至多有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知O為坐標(biāo)原點(diǎn),點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn).
(1)求線段AB的最短長(zhǎng)度;
(2)若線段AB的中點(diǎn)為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=xln(x-1)-a,下列說法正確的是( 。
A.當(dāng)a>0時(shí),f(x)有零點(diǎn)x0,且x0∈(1,2)B.當(dāng)a>0時(shí),f(x)有零點(diǎn)x0,且x0∈(2,+∞)
C.當(dāng)a=0時(shí),f(x)沒有零點(diǎn)D.當(dāng)a<0時(shí),f(x)有零點(diǎn)x0,且x0∈(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知c是雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的半焦距,則$\frac{c}{a+b}$的最小值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ax2+bx+c的圖象過原點(diǎn),它的導(dǎo)函數(shù)y=f′(x)的圖象是如圖所示的一條直線,則( 。
A.-$\frac{2a}$>0,$\frac{4ac-^{2}}{4a}$>0B.-$\frac{2a}$<0,$\frac{4ac-^{2}}{4a}$>0
C.-$\frac{2a}$>0,$\frac{4ac-^{2}}{4a}$<0D.-$\frac{2a}$<0,$\frac{4ac-^{2}}{4a}$<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=$\frac{1+{3}^{x}}{2}$-$\frac{|1-{3}^{x}|}{2}$,則f(x)的值域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知z=$\frac{(1+2i)(3+4i)}{(2-i)^{3}}$,則|z|=(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.任取一個(gè)五位數(shù),其能被5整除的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案