分析 (1)眾數(shù)的估計值為最高的矩形的中點,由此能求出眾數(shù)的估計值;設(shè)圖中虛線所對應(yīng)的車速為x,由頻率分布直方圖能求出中位數(shù)的估計值和平均數(shù)的估計值.
(2)從頻率分布直方圖求出車速在[60,65)的車輛數(shù)、車速在[65,70)的車輛數(shù),設(shè)車速在[60,65)的車輛設(shè)為a,b,車速在[65,70)的車輛設(shè)為c,d,e,f,利用列舉法能求出車速在[65,70)的車輛恰有一輛的概率.
解答 解:(1)眾數(shù)的估計值為最高的矩形的中點,
即眾數(shù)的估計值等于77.5,
設(shè)圖中虛線所對應(yīng)的車速為x,
則中位數(shù)的估計值為:0.01×5+0.02×5+0.04×5+0.06×(x-75)=0.5,
解得x=77.5,
即中位數(shù)的估計值為77.5,
平均數(shù)的估計值為:5×(62.5×0.01+67.5×0.02+72.5×0.04+77.5×0.06+82.5×0.05+87.5×0.02)=77.
(2)從圖中可知,車速在[60,65)的車輛數(shù)為:m1=0.01×5×40=2(輛),
車速在[65,70)的車輛數(shù)為:m2=0.02×5×40=4(輛)
設(shè)車速在[60,65)的車輛設(shè)為a,b,
車速在[65,70)的車輛設(shè)為c,d,e,f,
則所有基本事件有:
(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),
(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15種
其中車速在[65,70)的車輛恰有一輛的事件有:
(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f)共8種
∴車速在[65,70)的車輛恰有一輛的概率為${P}=\frac{8}{15}$.
點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意列舉法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | C. | $\frac{x^2}{4}+\frac{y^2}{5}=1$ | D. | $\frac{x^2}{9}+\frac{y^2}{5}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ee-e | B. | ee-2e | C. | 2e-1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{5}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {2,3} | C. | {-1,3} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 垂直 | C. | 相交不垂直 | D. | 無法判定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com