分析 |$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow$,不妨設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π)),代入化簡利用三角函數(shù)的單調(diào)性最值即可得出.
解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow$,
不妨設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π))
則($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$)•$\overrightarrow{c}$=(1-cosθ)•cosθ+(1-sinθ)•sinθ=sinθ+cosθ-1=$\sqrt{2}sin(θ+\frac{π}{4})$-1$≤\sqrt{2}$-1,
∴($\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是$\sqrt{2}$-1.
故答案為:$\sqrt{2}$-1.
點(diǎn)評 本題考查了三角函數(shù)的單調(diào)性最值、向量的坐標(biāo)運(yùn)算數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+2$\sqrt{2}$ | B. | 2+$\sqrt{2}$ | C. | 4+2$\sqrt{2}$ | D. | 4+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=0 | B. | $x=\frac{π}{4}$ | C. | $x=\frac{π}{2}$ | D. | x=π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 3$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1>x2,s12<s22 | B. | x1=x2,s12>s22 | C. | x1=x2,s12=s22 | D. | x1=x2,s12<s22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com