分析 由已知推導出{$\frac{1}{{S}_{n}}$}是首項為-1,公差為-1的等差數(shù)列,從而求出Sn=-$\frac{1}{n}$,由此能求出數(shù)列{an}的通項公式.
解答 解:Sn是數(shù)列{an}的前n項和,且a1=-1,$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,
∴Sn+1-Sn=Sn+1Sn,
∴$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}$=-1,$\frac{1}{{S}_{1}}$=-1,
∴{$\frac{1}{{S}_{n}}$}是首項為-1,公差為-1的等差數(shù)列,
∴$\frac{1}{{S}_{n}}$=-1+(n-1)×(-1)=-n.
∴Sn=-$\frac{1}{n}$,
n=1時,a1=S1=-1,
n≥2時,an=Sn-Sn-1=-$\frac{1}{n}$+$\frac{1}{n-1}$=$\frac{1}{n(n-1)}$.
∴an=$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{-1,n=1}\\{\frac{1}{n(n-1)},n≥2}\end{array}\right.$.
點評 本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認真審題,注意構(gòu)造法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,-1,1) | B. | (3,1,-1) | C. | (3,-1,-1) | D. | (3,1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com