16.某幾何體的三視圖如圖所示,則此幾何體的表面積是20+12$\sqrt{10}$.

分析 幾何體為正四棱臺(tái),上下底邊長(zhǎng)分別為2,4,根據(jù)棱臺(tái)的高求出側(cè)面梯形的高.

解答 解:由三視圖可知幾何體為正四棱臺(tái),上下底分別是邊長(zhǎng)為2和4的正方形,棱臺(tái)的高為3,
棱臺(tái)的四個(gè)側(cè)面為全等的等腰梯形.棱臺(tái)的斜高為$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$.
∴棱臺(tái)的表面積為42+22+4×$\frac{1}{2}$(2+4)×$\sqrt{10}$=20+12$\sqrt{10}$.
故答案為$20+12\sqrt{10}$.

點(diǎn)評(píng) 本題考查了正棱臺(tái)的結(jié)構(gòu)特征和表面積計(jì)算,計(jì)算斜高是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{13π}{2}+\sqrt{3}$B.$\frac{(12+\sqrt{3})π}{6}$C.$\frac{15π}{2}$D.$\frac{(6+\sqrt{3})π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“平面內(nèi)一動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)的距離的和為常數(shù)”是“平面內(nèi)一動(dòng)點(diǎn)P的軌跡為橢圓”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=1,$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)在數(shù)列{bn}中,${b_n}=\frac{4n+2}{{{a_n}•{a_{n+1}}}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,其中向量$\overrightarrow{a}$=(m,cos2x),$\overrightarrow$=(1+sin2x,1),且y=f(x)的圖象經(jīng)過(guò)點(diǎn)$({\frac{π}{4},2})$,則實(shí)數(shù)m的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=-4x3+6x2+1在[0,3]上的最大值為( 。
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖程序是求一個(gè)函數(shù)的函數(shù)值的程序,若執(zhí)行此程序的結(jié)果為3,則輸入的x值為4或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}滿足a1=$\frac{3}{2}$,且an+1=3an-1,bn=an-$\frac{1}{2}$.
(1)求證:數(shù)列{bn}是等比數(shù)列.
(2)若不等式$\frac{_{n}+1}{_{n+1}-1}$≤m對(duì)?n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.PA,PB是平面α的斜線,∠APB=90°,AB=10,P到平面α的距離為3,PA與平面α所成角為30°,求PB與平面α所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案