A. | $\frac{10}{3}$ | B. | 4 | C. | $\frac{7}{6}$ | D. | 6 |
分析 利用定積分知識求解該區(qū)域面積是解決本題的關鍵,要確定出曲線y=$\sqrt{x}$、直線y=-x+2的交點,確定出積分區(qū)間和被積函數(shù),利用導數(shù)和積分的關系完成本題的求解.
解答 解:聯(lián)立方程$\left\{\begin{array}{l}{y=\sqrt{x}}\\{y=-x+2}\end{array}\right.$得到兩曲線的交點(1,1),
因此曲線線y=$\sqrt{x}$、直線y=-x+2及x軸所圍成的圖形的面積為:
S=${∫}_{0}^{1}\sqrt{x}dx$+$\frac{1}{2}×1×1$=$\frac{2}{3}{x}^{\frac{3}{2}}{|}_{0}^{1}$+$\frac{1}{2}$=$\frac{7}{6}$.
故選:C.
點評 本題考查曲邊圖形面積的計算問題,考查學生分析問題解決問題的能力和意識,考查學生的轉化與化歸能力和運算能力,考查學生對定積分與導數(shù)的聯(lián)系的認識,求定積分關鍵要找準被積函數(shù)的原函數(shù),屬于定積分的簡單應用問題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -1 | D. | -1,1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | [1,+∞) | C. | [-2,+∞) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com