分析 由條件利用同角三角函數(shù)的基本關(guān)系求得sinα+cosα的值,可得sinαcosα的值,從而求得所給式子的值.
解答 解:∵銳角α滿足sin2α=$\frac{1}{4}$=2sinαcosα,∴sinαcosα=$\frac{1}{8}$,
∴sinα+cosα=$\sqrt{{(sinα+cosα)}^{2}}$=$\sqrt{1+2•\frac{1}{8}}$=$\frac{\sqrt{5}}{2}$,
則$\frac{1}{1+sinα}$+$\frac{1}{1+cosα}$=$\frac{2+cosα+sinα}{1+sinα+cosα+sinαcosα}$=$\frac{2+\frac{\sqrt{5}}{2}}{1+\frac{\sqrt{5}}{2}+\frac{1}{8}}$
=$\frac{16+4\sqrt{5}}{9+4\sqrt{5}}$=$\frac{(16+4\sqrt{5})•(9-4\sqrt{5})}{81-80}$=64-28$\sqrt{5}$,
故答案為:64-28$\sqrt{5}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 10 | C. | -4 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-∞,0)∪(0,$\frac{1}{2}$) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sn•Tn=1 | B. | Sn•Tn=$\frac{1}{{q}^{n}}$ | C. | Sn•Tn=qn•Tn | D. | Sn=qn-1•Tn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{5}}{9}$ | B. | $\frac{2\sqrt{5}}{9}$ | C. | -$\frac{4\sqrt{5}}{9}$ | D. | -$\frac{2\sqrt{5}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (2,$\frac{5}{2}$) | C. | (0,$\frac{5}{2}$) | D. | (-∞,$\frac{5}{2}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com