4.f(x)是定義在R上的奇函數(shù),f(-3)=2,則下列各點在函數(shù)f(x)圖象上的是( 。
A.(3,-2)B.(3,2)C.(-3,-2)D.(2,-3)

分析 根據(jù)f(x)是定義在R上的奇函數(shù),f(-3)=2,可得:f(3)=-2,進而得到答案.

解答 解:∵f(x)是定義在R上的奇函數(shù),f(-3)=2,
∴f(3)=-2,
故(3,-2)在函數(shù)f(x)圖象上,
故選:A

點評 本題考查的知識點是函數(shù)奇偶性的性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,為了得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個單位B.向右平移$\frac{π}{6}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某射擊小組有20個人,教練根據(jù)他們某次射擊的數(shù)據(jù)繪制成如圖的統(tǒng)計圖,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(  )
A.7,7B.8,7.5C.7,7.5D.8,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\overrightarrow{AB}$,$\overrightarrow{AC}$均為非零向量,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2,點M是線段BC(含兩端點)上的一點,且$\overrightarrow{AM}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=1,則|$\overrightarrow{AM}$|的取值范圍是A={x|$\frac{1}{8}$≤x≤1}的充分不必要條件(填“充分不必要”,“必要不充分”,“充分必要”,“既不充分也不必要”四者之一).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點P(1,0)在圓x2+y2-4x+2y+5k=0的外部,則k的取值范圍是($\frac{3}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.A,B是兩個集合,A={y|y=x2-2015},B={2015,y},其中y∈A,則y的取值集合是{y|y≥-2015,且y≠2015}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a>0,b<0,則“a+b=0”是“a+b≥2ab”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)$y=sin({ωx+\frac{π}{4}})$的圖象與y軸距離最小的對稱軸方程為$x=\frac{π}{6}$,則實數(shù)ω的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案