分析 化簡$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$,從而解得.
解答 解:∵$\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$=$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$,
∴$\underset{lim}{n→∞}$($\frac{{n}^{3}-1}{3{n}^{2}+n}$-$\frac{{n}^{2}+1}{3n+4}$)=$\underset{lim}{n→∞}$$\frac{3{n}^{3}-3{n}^{2}-4n-4}{(3{n}^{2}+n)(3n+4)}$
=$\underset{lim}{n→∞}$$\frac{3-\frac{3}{n}-\frac{4}{{n}^{2}}-\frac{4}{{n}^{3}}}{(3+\frac{1}{n})(3+\frac{4}{n})}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題考查了學生的化簡能力與極限的求法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,-2) | B. | (3,2) | C. | (-3,-2) | D. | (2,-3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | C. | 既奇又偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com