18.如圖,當輸入x=-5,y=15時,圖中程序運行后輸出的結(jié)果為( 。
A.3;33B.33;3C.-17;7D.7;-17

分析 模擬執(zhí)行程序代碼,根據(jù)條件計算可得x的值,即可計算并輸出x-y,y+x的值.

解答 解:模擬執(zhí)行程序代碼,可得:
x=-5,y=15
滿足條件x<0,則得x=15+3=18,
輸出x-y的值為3,y+x的值為33.
故選:A.

點評 本題主要考查了偽代碼,選擇結(jié)構(gòu)、也叫條件結(jié)構(gòu),模擬程序的執(zhí)行過程是解答此類問題常用的辦法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.漸近線方程為y=±2x,一個焦點的坐標為($\sqrt{10}$,0)的雙曲線標準方程為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{8}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.一個如圖所示的密閉容器,它的下部是一個底面半徑為1m,高為2m的圓錐體,上半部是個半球,則這個密閉容器的表面積是多少?體積為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.一個幾何體的頂點都在球面上,這個幾何體的三視圖如圖所示,該球的表面積是(  )
A.19πB.38πC.48πD.$\frac{{19\sqrt{38}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖是某幾何體的三視圖,則該幾何體的體積為( 。
A.24B.36C.72D.144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.2015年9月3日,抗戰(zhàn)勝利70周年紀念活動在北京隆重舉行,受到全國人民的矚目.紀念活動包括舉行紀念大會、閱兵式、招待會和文藝晚會等,據(jù)統(tǒng)計,抗戰(zhàn)老兵由于身體原因,參加紀念大會、閱兵式、招待會這三個環(huán)節(jié)(可參加多個,也可都不參加)的情況及其概率如表所示:
參加紀念活動的環(huán)節(jié)數(shù)0123
概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{6}$
(Ⅰ)若從抗戰(zhàn)老兵中隨機抽取2人進行座談,求這2人參加紀念活動的環(huán)節(jié)數(shù)不同的概率;
(Ⅱ)某醫(yī)療部門決定從這些抗戰(zhàn)老兵中(其中參加紀念活動的環(huán)節(jié)數(shù)為3的抗戰(zhàn)老兵數(shù)大于等于3)隨機抽取3名進行體檢,設(shè)隨機抽取的這3名抗戰(zhàn)老兵中參加三個環(huán)節(jié)的有ξ名,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.2015年9月3日,抗戰(zhàn)勝利70周年紀念活動在北京隆重舉行,受到全國人民的矚目.紀念活動包括舉行紀念大會、閱兵式、招待會和文藝晚會等,據(jù)統(tǒng)計,抗戰(zhàn)老兵由于身體原因,參加紀念大會、閱兵式、招待會這三個環(huán)節(jié)(可參加多個,也可都不參加)的情況及其概率如表所示:
參加紀念活動的環(huán)節(jié)數(shù)0123
概率$\frac{1}{6}$mn$\frac{1}{3}$
(Ⅰ)若m=2n,則從這60名抗戰(zhàn)老兵中按照參加紀念活動的環(huán)節(jié)數(shù)分層抽取6人進行座談,求參加紀念活動環(huán)節(jié)數(shù)為2的抗戰(zhàn)老兵中抽取的人數(shù);
(Ⅱ)某醫(yī)療部門決定從(1)中抽取的6名抗戰(zhàn)老兵中隨機抽取2名進行體檢,求這2名抗戰(zhàn)老兵中至少有1人參加紀念活動的環(huán)節(jié)數(shù)為3的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( 。
A.若m?α,n?α,m∥β,n∥β,則α∥βB.若m?α,m∥β,α∩β=n,則m∥n
C.若α∥β,m∥α,則m∥βD.若m⊥n,n⊥β,β⊥α,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系xOy中,已知四邊形OABC是等腰梯形,OA∥BC,$A(6,0),C(1,\sqrt{3})$,點M滿足$\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}$,點P在線段BC上運動(包括端點),如圖.
(Ⅰ)求∠OCM的余弦值;
(Ⅱ)是都存在實數(shù)λ,使$({\overrightarrow{OA}+λ\overrightarrow{OP}})⊥\overrightarrow{CM}$,若存在,求出滿足條件的實數(shù)λ的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案