分析 (1)利用三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=$\frac{1}{2}$cos(2ωx+2φ+$\frac{π}{6}$),令2ωx+2φ+$\frac{π}{6}$=0,可得函數(shù)的一個(gè)最大值點(diǎn)O的坐標(biāo),令2ωx+2φ+$\frac{π}{6}$=-$\frac{π}{2}$,可得函數(shù)的一個(gè)最大值點(diǎn)O的左相鄰的對(duì)稱點(diǎn)A的坐標(biāo),
令2ωx+2φ+$\frac{π}{6}$=$\frac{π}{2}$,可得函數(shù)的一個(gè)最大值點(diǎn)O的右相鄰的對(duì)稱點(diǎn)B的坐標(biāo),由|AB|2=2|OB|2,結(jié)合范圍ω>0,解得$ω=\frac{π}{2}$.由$\frac{1}{2}$cos($\frac{2π}{3}$+2φ+$\frac{π}{6}$)=0,結(jié)合范圍0<φ<$\frac{π}{2}$,可得φ=$\frac{π}{3}$,可得函數(shù)解析式,由x∈[0,2]時(shí),可得πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$,$\frac{17π}{6}$],利用余弦函數(shù)的圖象可得單調(diào)遞減區(qū)間.
(2)由(1)及配方法可得g(x)=$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2,由題意,m=$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2-$\frac{17}{64}$在x∈[$\frac{5}{6}$,$\frac{3}{2}$]時(shí)有解,利用正弦函數(shù)的有界性即可求解.
解答 (本小題滿分12分)
解:(1)∵f(x)=$\sqrt{3}$cos2(ωx+φ)-cos(ωx+φ)•sin(ωx+φ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$
=$\frac{\sqrt{3}+\sqrt{3}cos(2ωx+2φ)}{2}$-$\frac{1}{4}$sin(2ωx+2φ)-$\frac{\sqrt{3}}{4}$-$\frac{\sqrt{3}}{4}$cos(2ωx+2φ)-$\frac{\sqrt{3}}{4}$
=$\frac{1}{2}$[$\frac{\sqrt{3}}{2}$cos(2ωx+2φ)-$\frac{1}{2}$sin(2ωx+2φ)]
=$\frac{1}{2}$cos(2ωx+2φ+$\frac{π}{6}$),
∴函數(shù)周期T=$\frac{2π}{2ω}$,
∵令2ωx+2φ+$\frac{π}{6}$=0,可得函數(shù)的一個(gè)最大值點(diǎn)O的坐標(biāo)為:(-$\frac{\frac{π}{6}+2φ}{2ω}$,$\frac{1}{2}$),
令2ωx+2φ+$\frac{π}{6}$=-$\frac{π}{2}$,可得函數(shù)的一個(gè)最大值點(diǎn)O的左相鄰的對(duì)稱點(diǎn)A的坐標(biāo)為:(-$\frac{\frac{2π}{3}+2φ}{2ω}$,0),
令2ωx+2φ+$\frac{π}{6}$=$\frac{π}{2}$,可得函數(shù)的一個(gè)最大值點(diǎn)O的右相鄰的對(duì)稱點(diǎn)B的坐標(biāo)為:($\frac{\frac{π}{3}-2φ}{2ω}$,0),
∴由題意可得:|AB|2=2|OB|2,即得:($\frac{π}{2ω}$)2=2[($\frac{\frac{π}{3}-2φ}{2ω}$+$\frac{\frac{π}{6}+2φ}{2ω}$)2+(-$\frac{1}{2}$)2],解得ω2=$\frac{{π}^{2}}{4}$,
∵ω>0,解得:$ω=\frac{π}{2}$.
∴f(x)=$\frac{1}{2}$cos(πx+2φ+$\frac{π}{6}$),
∵($\frac{2}{3}$,0)是f(x)的一個(gè)對(duì)稱中心,即:$\frac{1}{2}$cos($\frac{2π}{3}$+2φ+$\frac{π}{6}$)=0,
∴$\frac{2π}{3}$+2φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,解得:φ=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
∴由0<φ<$\frac{π}{2}$,可得:φ=$\frac{π}{3}$.
∴f(x)=$\frac{1}{2}$cos(πx+$\frac{5π}{6}$),
∵x∈[0,2]時(shí),πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$,$\frac{17π}{6}$],
∴當(dāng)利用余弦函數(shù)的圖象可得,當(dāng)πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$π],πx+$\frac{5π}{6}$∈[2π,$\frac{17π}{6}$]時(shí)單調(diào)遞減,
即函數(shù)f(x)的單調(diào)遞減區(qū)間為:[0,$\frac{1}{6}$]∪[$\frac{5}{6}$,2].
(2)∵由(1)可得:f(x-$\frac{5}{6}$)=$\frac{1}{2}$cosπx,
f(x-$\frac{1}{3}$)=-$\frac{1}{2}$sinπx.
∴g(x)=f2(x-$\frac{5}{6}$)+$\frac{1}{4}$f(x-$\frac{1}{3}$)+m=$\frac{1}{4}$cos2πx-$\frac{1}{8}$sinπx+m=$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2,
∵g(x)在x∈[$\frac{5}{6}$,$\frac{3}{2}$]時(shí)有零點(diǎn),即方程:$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2=0在x∈[$\frac{5}{6}$,$\frac{3}{2}$]時(shí)有解,
∴m=$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2-$\frac{17}{64}$在x∈[$\frac{5}{6}$,$\frac{3}{2}$]時(shí)有解,
∵x∈[$\frac{5}{6}$,$\frac{3}{2}$],sinπx∈[-1,$\frac{1}{2}$],sinπx+$\frac{1}{4}$∈[-$\frac{3}{4}$,$\frac{3}{4}$],$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2∈[0,$\frac{9}{64}$],
∴m∈[-$\frac{17}{64}$,-$\frac{1}{8}$].
點(diǎn)評(píng) 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù),余弦函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想的應(yīng)用,考查了配方法的應(yīng)用,綜合性強(qiáng),計(jì)算量大,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}i$ | B. | $\frac{3}{2}$ | C. | $-\frac{3}{2}i$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com