10.設(shè)z=(2-i)2(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為3+4i.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:z=(2-i)2=4-1-4i=3-4i,
∴$\overline{z}$=3+4i,
故答案為:3+4i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.自⊙O外一點(diǎn)p引切線與⊙O切于點(diǎn)A,M為PA的中點(diǎn),過(guò)M引割線交⊙O于B、C兩點(diǎn).
求證:
(Ⅰ)PM2=MB•MC;
(Ⅱ)∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,a=80,b=100,A=30°,則B的解的個(gè)數(shù)是2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{lnx}{x}$
(1)若直線y=kx與曲線f(x)=$\frac{lnx}{x}$相切,求實(shí)數(shù)k的值;
(2)若e<a<b,比較ab與ba的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的a,b∈R都滿足:f(a•b)=af(b)+bf(a),若f(2)=2,Un=f(2n)(n∈N*
(1)求Ul,U2,U3的值.     
(2)求證:Un+1>Un

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(cos θ,sin θ),向量$\overrightarrow$=($\sqrt{3}$,-1),則|2$\overrightarrow{a}$-$\overrightarrow$|的最大值與最小值的和為4+$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列對(duì)應(yīng)是從集合S到T的映射的是(  )
A.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},對(duì)應(yīng)法則是開(kāi)平方
B.S={0,1,2,5},T=$\{1,\frac{1}{2},\frac{1}{5}\}$,對(duì)應(yīng)法則是取倒數(shù)
C.S=N,T={-1,1},對(duì)應(yīng)法則是n→(-1)n,n∈S
D.S={x|x∈R},T={y|y∈R},對(duì)應(yīng)法則是x→y=$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)不等式$\frac{4-x}{x-2}>0$的解集為集合A,關(guān)于x的不等式x2+(2a-3)x+a2-3a+2<0的解集為集合B.
(Ⅰ)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合A={x|2a≤x≤a+3},B=(5,+∞),若A∩B=A,則實(shí)數(shù)a的取值范圍($\frac{5}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案