分析 (1)設(shè)出切點(diǎn)坐標(biāo)P(a,$\frac{lna}{a}$),求出導(dǎo)函數(shù)y′,利用導(dǎo)數(shù)的幾何意義即k=y′|x=a,再根據(jù)切點(diǎn)在切線上,列出關(guān)于a和k的方程組,求解即可求得k的值.
(2)由函數(shù)f(x)=$\frac{lnx}{x}$,利用函數(shù)f(x)的單調(diào)性和對數(shù)的運(yùn)算性質(zhì)即可得到結(jié)論.
解答 解:(1)設(shè)切點(diǎn)坐標(biāo)為P(a,$\frac{lna}{a}$),
∵曲線y=$\frac{lnx}{x}$,
∴y′=$\frac{1-lnx}{{x}^{2}}$,
∴k=y′|x=a=$\frac{1-lna}{{a}^{2}}$,①
又∵切點(diǎn)P(a,$\frac{lna}{a}$)在切線y=kx上,
∴$\frac{lna}{a}$=ka,②
由①②,解得a=$\sqrt{e}$,k=$\frac{1}{2e}$,
∴實數(shù)k的值為$\frac{1}{2e}$.
(2)由函數(shù)f(x)=$\frac{lnx}{x}$,
則f′(x)=$\frac{1-lnx}{{x}^{2}}$,當(dāng)x>e時,f′(x)<0,
即函數(shù)f(x)在x>e時是減函數(shù),
∵e<a<b,
∴$\frac{lna}{a}>\frac{lnb}$,即blna>alnb,即lnab>lnba,
則ab>ba.
點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.導(dǎo)數(shù)的幾何意義即在某點(diǎn)處的導(dǎo)數(shù)即該點(diǎn)處切線的斜率,解題時要注意運(yùn)用切點(diǎn)在曲線上和切點(diǎn)在切線上;本題還考查了指數(shù)冪的大小比較,根據(jù)已知條件,利用函數(shù)的單調(diào)性是解決本題的關(guān)鍵,綜合性較強(qiáng)有一定的難度,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+1)2+(y-1)2=1 | B. | (x-1)2+(y+1)2=1 | ||
C. | (x+1)2+(y+1)2=1 | D. | (x+1)2+(y-1)2=1或(x-1)2+(y+1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com