9.已知奇函數(shù)g(x)滿足g(x)=f(x)+5且f(-3)=9,求f(3).

分析 化簡可得g(-3)=f(-3)+5=14,從而可得g(3)=f(3)+5=-14.

解答 解:∵g(x)=f(x)+5且f(-3)=9,
∴g(-3)=f(-3)+5=14,
又∵g(x)為奇函數(shù),
∴g(3)=-g(-3)=-14,
∴g(3)=f(3)+5=-14,
故f(3)=-19.

點評 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$\root{4}{{a}^{4}}$=-a,則實數(shù)a的取值范圍a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.比較下列各組值的大。
(1)1.10.9,1og1.10.9,log0.70.8.
(2)1og53,1og63,1og73.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.α是第一象限角,且tanα=$\frac{24}{7}$,則tan$\frac{α}{2}$的值為( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{3}{4}$或-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=3x+m3-x,m、x是實數(shù).
(1)若y=|f(x)|是偶函數(shù),求m的值;
(2)若x≥1時,3x[f(x)+1]≥0恒成立,求實數(shù)m的取值范圍;
(3)當(dāng)m=1時,若log3[3xf(x)]-2x>a對一切實數(shù)x成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x+$\frac{4}{x}$.
(1)判斷f(x)的奇偶性;
(2)求證:f(x)在區(qū)間[2,+∞)上為增函數(shù);
(3)求f(x)在[-4,-1]上的最大值和最小值,并求出取得最值時對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)y=$\frac{3+x}{4-x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正項等比數(shù)列中{bn}中b1b2b3…b99=299,則b8+b92的最小值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=($\sqrt{sinx}$,0),$\overrightarrow$=($\sqrt{cosx}$,$\sqrt{3}$),|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍是(  )
A.[2,+∞)B.(-∞,$\sqrt{2}$+1]C.[1,2$\sqrt{2}$]D.[2,$\sqrt{2}$+1]

查看答案和解析>>

同步練習(xí)冊答案