3.將4名同學(xué)錄取到3所大學(xué),則每所大學(xué)至少錄取一名的概率為(  )
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{4}{9}$D.$\frac{8}{9}$

分析 先求出基本事件總數(shù),再求出每所大學(xué)至少錄取一名的基本事件個數(shù),由此能求出每所大學(xué)至少錄取一名的概率.

解答 解:將4名同學(xué)錄取到3所大學(xué),
基本事件總數(shù)n=34=81,
每所大學(xué)至少錄取一名的基本事件個數(shù)m=$\frac{{C}_{4}^{2}}{{A}_{2}^{2}}$×${A}_{3}^{3}$=36,
∴每所大學(xué)至少錄取一名的概率p=$\frac{36}{81}$=$\frac{4}{9}$.
故選:C.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一個盒子里裝有6張卡片,其中紅色卡片4張,編號分別為3,6,8,9;藍(lán)色卡片2張,編號分別為6,8,從盒子中任取3張卡片(假設(shè)取到任何一張卡片的可能性相同).
(Ⅰ)求取出的3張卡片中,含有編號為6的卡片的概率;
(Ⅱ)記X為取到的卡片中紅色卡片的張數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2015年7月31日,國際奧委會在吉隆坡正式宣布2022年奧林匹克冬季運(yùn)動會(簡稱冬奧會)在北京和張家口兩個城市舉辦,某中學(xué)為了普及奧運(yùn)知識,舉行了一次奧運(yùn)知識競賽,分析發(fā)現(xiàn),成績x服從正態(tài)分布,即x~N(85,σ2)(滿分100分),已知P(x<80)=0.2,P(x≥95)=0.1,任意選取3名考生.
(I)求抽到的3名考生成績在[80,90)、[90,95)和[95,100]內(nèi)各有1名考生的概率;
(Ⅱ)記抽到的3名同學(xué)中,成績在[80,90)的人數(shù)是ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若對于任意的x∈[1,2],不等式$\frac{1+ax}{x•{2}^{x}}$≥1恒成立,則實數(shù)a的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果執(zhí)行如圖的程序框圖,那么輸出的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)直線2x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,則弦AB的垂直平分線的方程是( 。
A.3x-2y-3=0B.3x-2y+3=0C.2x-3y-3=0D.2x-3y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=ax(a>0,且a≠1)在[0,1]上的最大值與最小值之和為3,則a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},則∁UA=( 。
A.B.{1,3,5}C.{1,3,6,7}D.{1,3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2(a∈R).
(1)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(3)若任意x∈[1,+∞),使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案