分析 (1)利用二項式展開定理比較可知:b2n=${C}_{10}^{n}$(n=0,1,2,…,10),進而T=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=0•${C}_{10}^{0}$+1•${C}_{10}^{1}$+2•${C}_{10}^{2}$+…+10•${C}_{10}^{10}$,利用倒序相加法、化簡得:T=5•210,進而計算可得結(jié)論;
(2)結(jié)合(2)中結(jié)論、化簡可知:$\frac{2}{t}$(1+t)10-$\frac{2}{t}$-310+1=0,進而計算可得結(jié)論.
解答 解:(1)(x2+x+2)10=[1+(x+1)2]10
=${C}_{10}^{0}$+${C}_{10}^{1}$(x+1)2+${C}_{10}^{2}$(x+1)4+…+${C}_{10}^{10}$(x+1)20
=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,
比較可知:b2n=${C}_{10}^{n}$(n=0,1,2,…,10),
而A=0、B=1時,an=Atn-1+Bn+1=n+1,
∴$\sum_{n=1}^{10}$anb2n=$\sum_{n=1}^{10}$(n+1)${C}_{10}^{n}$=$\sum_{n=1}^{10}$n${C}_{10}^{n}$+$\sum_{n=1}^{10}$${C}_{10}^{n}$,
記T=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=0•${C}_{10}^{0}$+1•${C}_{10}^{1}$+2•${C}_{10}^{2}$+…+10•${C}_{10}^{10}$,
另外也可寫成T=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=10•${C}_{10}^{10}$+…+2•${C}_{10}^{2}$+1•${C}_{10}^{1}$+0•${C}_{10}^{0}$,
兩式相減得:2T=10•${C}_{10}^{10}$+…+10•${C}_{10}^{2}$+10•${C}_{10}^{1}$+10•${C}_{10}^{0}$
=10•(${C}_{10}^{10}$+…+${C}_{10}^{2}$+${C}_{10}^{1}$+${C}_{10}^{0}$)
=10•210,
即T=5•210,
∴$\sum_{n=1}^{10}$anb2n=$\sum_{n=1}^{10}$n${C}_{10}^{n}$+$\sum_{n=1}^{10}$${C}_{10}^{n}$=5•210+210-1=6143;
(2)當A=1、B=0時,an=Atn-1+Bn+1=tn-1+1,
結(jié)合(2)中結(jié)論可知:
$\sum_{n=1}^{10}$(2an-2n)b2n=2$\sum_{n=1}^{10}$anb2n-$\sum_{n=1}^{10}$2nb2n
=2$\sum_{n=1}^{10}$anb2n-$\sum_{n=1}^{10}$2nb2n …①
=2[$\frac{1}{t}$(1+t)10-1+210-1]-[(1+2)10-1]
=$\frac{2}{t}$(1+t)10-$\frac{2}{t}$+211-2-310+1
=211-2,
即$\frac{2}{t}$(1+t)10-$\frac{2}{t}$-310+1=0,…②
∵①為關于t的遞增的式子,
∴關于t的方程最多只有一解,
而觀察②可知,有一解t=2,
綜上可知:t=2.
點評 本題考查數(shù)列的綜合應用,解題時要認真審題,仔細解答,避免錯誤,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{3}{2}$+$\frac{3}{2}$i | C. | $\frac{\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$i | D. | $\frac{3\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3\sqrt{5}$ | B. | $\sqrt{15}$ | C. | 3 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com