分析 (1)由已知及正弦定理可得:sin2AsinC+sinC•cos2A=2sinA,整理可得sinC=2sinA,從而可求$\frac{sinC}{sinA}$的值.
(2)由(1)及正弦定理先得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{15}}{4}$,由余弦定理從而可求a,c的值,利用三角形面積公式即可得解.
解答 (本題滿分為12分)
解:(1)∵asinAsinC+c•cos2A=2a.
∴由正弦定理可得:sin2AsinC+sinC•cos2A=2sinA.
∴可得:sin2AsinC+sinC•(1-sin2A)=2sinA,整理可得sinC=2sinA,
∴$\frac{sinC}{sinA}$=2.
(2)∵由(1)$\frac{sinC}{sinA}$=2及正弦定理可得:c=2a,又cosB=$\frac{1}{4}$,b=2,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{15}}{4}$,
∴由余弦定理可得:b2=a2+c2-2accosB=a2+4a2-2×$a×2a×\frac{1}{4}$=4,解得:a=1,c=2,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×1×2×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{4}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -4$\sqrt{2}$ | C. | -6 | D. | 2$\sqrt{2}$-8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com