11.在△ABC中,已知$\sqrt{2}$sinA=$\sqrt{3cosA}$,則∠A=$\frac{π}{3}$.

分析 由題意可得2sin2A=3cosA,求得cosA的值,可得A的值.

解答 解:△ABC中,∵已知$\sqrt{2}$sinA=$\sqrt{3cosA}$,∴2sin2A=3cosA,即2-2cos2A=3cosA,
求得cosA=$\frac{1}{2}$,或cosA=-2(舍去),則∠A=$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點評 本題考查三角形的內(nèi)角的求法,解題時要認(rèn)真審題,注意三角函數(shù)性質(zhì)的靈活運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知方程$\frac{{x}^{2}}{m}$+y2=1表示的曲線是焦點在x軸上且離心率為$\frac{1}{2}$的橢圓,則m=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知過原點O的直線與函數(shù)y=log9x的圖象交于A,B兩點,分別過A,B作y軸的平行線與函數(shù)y=log3x的圖象 交于C,D兩點,當(dāng)BC∥x軸時,A點的橫坐標(biāo)是( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù).
(1)求a,b的值;
(2)判斷并證明f(x)在R上的單調(diào)性.
(3)若對任意的t∈R,不等式f(t2-2t)+f(-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知U=R,A={x|y=1gx},B={y|y=--x2-1},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,∠A=30°,a=3,b=3$\sqrt{2}$,∠B=45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等差數(shù)列{an}的公差d≠0,前n項和為Sn.且a3、a5、a8依次成等比數(shù)列,則$\frac{{S}_{10}}{{a}_{9}}$=$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=2x-$\frac{2}{x}$-5lnx,g(x)=x2-mx+4,若存在x1∈(0,1),對任意的x2∈[1,2],總有f(x1)≥g(x2)成立,則實數(shù)m的取值范圍為[8-5ln2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.畫出求1!+2!+…+100!的程序框圖,并寫出程序(100!=1×2×…×100)

查看答案和解析>>

同步練習(xí)冊答案