6.已知f(cosx)=2cos2x,則f(sin525°)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

分析 利用誘導(dǎo)公式得到sin525°=cos75°,再利用函數(shù)的性質(zhì)能求出結(jié)果.

解答 解:∵f(cosx)=2cos2x,
∴f(sin525°)=f(sin165°)=f(sin15°)
=f(cos75°)=2cos150°=-2cos30°=-$\sqrt{3}$.
故選:D.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意誘導(dǎo)公式和函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的三個向量,其中$\overrightarrow{a}$,$\overrightarrow$是相互垂直的單位向量,且($\overrightarrow{a}-\overrightarrow{c}$)•($\sqrt{3}\overrightarrow$-$\overrightarrow{c}$)=1,|$\overrightarrow{c}$|的最大值為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)命題p:函數(shù)f(x)=x2+(a-1)x+5在(-∞,1]上是減函數(shù);
命題q:?x∈R,lg(x2+2ax+3)>0.
若p∨¬q是真命題,p∧¬q是假命題,則實數(shù)a的取值范圍是$-\sqrt{2}<a≤$-1,或$a≥\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若a1=3,a2=6,且an+2=an+1-an,則a2016等于-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.計算:sin(-1071°)•sin99°+sin(-171°)•sin(-261°).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,首項為3,公差為2.
(1)求數(shù)列{an}的前n項和Sn
(2)求和:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖正四棱住ABCD-A1B1C1D1中,點E是A1A上的點,M是AC、BD的交點.
(1)若A1C∥平面EBD,求證:點E是AA1中點;
(2)若AB=1,△EBD的面積S=$\sqrt{2}$,點F在CC1上,且FM⊥EM,求三棱錐體積VF-EBD的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.給出下列4個命題,其中正確的個數(shù)是( 。
①若“命題p∧q為真”,則“命題p∨q為真”;
②命題“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
②“tanx>0”是“sin2x>0”的充要條件;
④計算:9192除以100的余數(shù)是1.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1
(2)若D為AB中點,∠CA1D=45°且AB=2,求三棱錐F-AEC的體積.

查看答案和解析>>

同步練習冊答案