16.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若cos2B+cosB=1-cosAcosC,則( 。
A.a、b、c 成等差數(shù)列B.a、b、c成等比數(shù)列
C.a、2b、3c 成等差數(shù)列D.a、2b、3c成等比數(shù)列

分析 由cosB=-cos(A+C),以及兩角和的余弦公式,結(jié)合正弦定理和等比數(shù)列的中項(xiàng)的性質(zhì),即可得到答案.

解答 解:cos2B+cosB=1-cosAcosC,
即為cosB+cosAcosC=1-cos2B,
即有-cos(A+C)+cosAcosC=sin2B,
-cosAcosC+sinAsinC+cosAcosC=sin2B,
即有sinAsinC=sin2B,
由正弦定理可得ac=b2,
即有a,b,c成等比數(shù)列.
故選:B.

點(diǎn)評 本題考查三角函數(shù)的化簡,考查正弦定理的運(yùn)用和等比數(shù)列的中項(xiàng)的性質(zhì),化簡運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S5、S4、S6成等差數(shù)列.則數(shù)列{an}的公比為q的值等于(  )
A.-2或1B.-1或2C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x∈N|x>2},集合B={x∈N|x<n,n∈N},若A∩B的元素的個數(shù)為6,則n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}2x-3,x≥0\\{2^x}-1,x<0\end{array}\right.$,則f(f(1))=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-2|x-a|(a∈R).
(I)當(dāng)a=0時,求方程f(x)=0的根;
(Ⅱ)當(dāng)a>0時,若對任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合P={x|x≥3或x≤-3},Q={y|y>-1},則P∩Q=(  )
A.[3,+∞)B.(-∞,-3]∪(-1,+∞)C.(-1,+∞)D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)={x^2}(x-\frac{2}{x})$的導(dǎo)函數(shù)f′(x),則f′(1)等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,|an+1-an|=$\frac{1}{{2}^{n}}$,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.△ABC中,角A,B,C所對的邊分別為a,b,c,若B=60°,b=1,求a+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案