1.已知角α的終邊經(jīng)過(guò)點(diǎn)P(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$),則角a可能是( 。
A.-$\frac{π}{3}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由點(diǎn)P(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$)在第二象限,且tanα=$\frac{cos\frac{5π}{6}}{sin\frac{5π}{6}}$=tan(-$\frac{π}{3}$),由此有求出求出α.

解答 解:∵角α的終邊經(jīng)過(guò)點(diǎn)P(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$),
點(diǎn)P(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$)在第四象限,
且tanα=$\frac{cos\frac{5π}{6}}{sin\frac{5π}{6}}$=cot$\frac{5π}{6}$=-tan$\frac{π}{3}$=tan(-$\frac{π}{3}$),
∴$α=-\frac{π}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意任意角三角函數(shù)定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sinx+cosx.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)•f(-x)+f2(x)的最大值和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知$\overrightarrow{a}$=(2,2,1),$\overrightarrow b=({4,5,3})$,而$\overrightarrow n•\overrightarrow a=\overrightarrow n•\overrightarrow b=0$,且$|{\overrightarrow n}$|=1,則$\overrightarrow n$=( 。
A.($\frac{1}{3}$,$\frac{2}{3}$,-$\frac{2}{3}$)B.($\frac{1}{3}$,-$\frac{2}{3}$,$\frac{2}{3}$)C.(-$\frac{1}{3}$,$\frac{2}{3}$,-$\frac{2}{3}$)D.±($\frac{1}{3}$,-$\frac{2}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在日前舉行的全國(guó)大學(xué)生智能總決賽中,某高校學(xué)生開(kāi)發(fā)的智能機(jī)器人在一個(gè)標(biāo)注了平面直角坐標(biāo)系的平面上從坐標(biāo)原點(diǎn)出發(fā),每次只能移動(dòng)一個(gè)單位,沿x軸正方向移動(dòng)的概率是$\frac{2}{3}$,沿y軸正方向移動(dòng)的概率為$\frac{1}{3}$,則該機(jī)器人移動(dòng)6次恰好移動(dòng)到點(diǎn)(3,3)的概率為$\frac{160}{729}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{x+1}{\sqrt{2x+1}}$(0<x<1),則f(x)的值域?yàn)椋?,$\frac{2\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知|cosα|=cosα,|tanα|=-tanα,則α的取值范圍是( 。
A.(2kπ-$\frac{π}{2}$,2kπ](k∈Z)B.(2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z)
C.(kπ-$\frac{π}{2}$,kπ](k∈Z)D.(2kπ+$\frac{π}{2}$,2kπ+π](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.sin2(π+α)-cos(π-α)•cosα+1=( 。
A.2B.1C.2sin2αD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列六個(gè)命題:
①兩個(gè)向量相等,如果它們起點(diǎn)相同則終點(diǎn)相同
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,則ABCD為平行四邊形
④平行四邊形ABCD一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{z}$,則$\overrightarrow{m}$=$\overrightarrow{z}$
⑥若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$
⑦($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)
其中不正確的命題序號(hào)為②⑥⑦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=(x-a)2+(ex-a)2(a∈R),若存在x0∈R,使得f(x0)≤$\frac{1}{2}$成立,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案